6533b827fe1ef96bd128707d
RESEARCH PRODUCT
Influence of substrate and temperature on the biodegradation of polyester-based materials: Polylactide and poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) as model cases
Llúcia MonrealAmparo Ribes-greusE. VerdejoE. DominguezO. Gil-castellO. Gil-castellR. Andres-puchesubject
Solucions polimèriquesMaterials sciencePolymers and PlasticsPoly-3-hydroxybutyratePolyester02 engineering and technology010402 general chemistry01 natural sciences15.- Proteger restaurar y promover la utilización sostenible de los ecosistemas terrestres gestionar de manera sostenible los bosques combatir la desertificación y detener y revertir la degradación de la tierra y frenar la pérdida de diversidad biológicaCIENCIA DE LOS MATERIALES E INGENIERIA METALURGICAMaterials Chemistry03.- Garantizar una vida saludable y promover el bienestar para todos y todas en todas las edades13.- Tomar medidas urgentes para combatir el cambio climático y sus efectosMaterials3-Hydroxyhexanoate11.- Conseguir que las ciudades y los asentamientos humanos sean inclusivos seguros resilientes y sosteniblesSubstrate (chemistry)Biodegradation021001 nanoscience & nanotechnologyCondensed Matter PhysicsBiomaterial0104 chemical sciences02.- Poner fin al hambre conseguir la seguridad alimentaria y una mejor nutrición y promover la agricultura sosteniblePolyesterPHBHChemical engineeringMechanics of MaterialsThermal degradationMAQUINAS Y MOTORES TERMICOSBiodegradationPLAChristian ministry0210 nano-technologySubstrateMATEMATICA APLICADAdescription
[EN] The extended use of polymers from renewable resources such as aliphatic polyesters or polyhydroxyalkanoates boosted the necessity to understand their behaviour in an end-of-life scenario. Although they can be degraded in reasonable shorter times than traditional polymers, understanding the degradation mechanisms under dissimilar conditions will contribute to further developments in this field. This work aimed to study the effect of temperature and substrate in the degradation of polylactide (PLA) and poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBH) in a simulated laboratory scale to ascertain their contribution, separately or in combination. For this purpose, nine parallel degradation assays were performed by means of the combination of mesophilic (25 °C), thermophilic (58 °C) and hyperthermophilic (80 °C) temperatures with enriched synthetic medium, compost and standardised soil substrates. Although the analysis of the surface morphology, the thermal properties and the thermo-oxidative stability revealed changes as a function of time, the evaluation of the molar mass allowed for a more precise determination of the degradation. In general, chain scission was perceived in all cases as a function of time. The effect of temperature was critical, significantly more important than the effect of the substrate, which showed a less significant contribution, especially in terms of molar mass reduction. While for the PLA, biodegradation at 58 °C and thermal degradation at 80 °C resulted in similar consequences, for the PHBH the hyperthermophilic temperature of 80 °C was the most severe condition, regardless of the substrate. From a technological perspective, it may be highlighted that biodegradation at 58 °C may be the most cost-effective condition due to the lower energy supply required and the valuable contribution of the microorganisms.
year | journal | country | edition | language |
---|---|---|---|---|
2020-10-01 |