6533b828fe1ef96bd1288405

RESEARCH PRODUCT

3-Aryl-2-[1H-benzotriazol-1-yl]acrylonitriles: a novel class of potent tubulin inhibitors.

Antonio CartaManlio TolomeoSabrina PriclPaolo La CollaMaurizio FermegliaErik LauriniStefania GrimaudoRoberta LoddoGiampiero BoattoAntonietta Di CristinaSandra PirasMaria Silvia PaneniMaria Rosaria PipitoneIrene BriguglioPaola Posocco

subject

Models MolecularMagnetic Resonance SpectroscopyMolecular modelStereochemistryAnti-cancer drugsBinding CompetitiveGas Chromatography-Mass SpectrometryAnti-cancer drugchemistry.chemical_compoundStructure-Activity RelationshipTubulinAnti-cancer drugs; drug design and development; computer assisted drug designDrug DiscoveryK562 CellmedicineStructure–activity relationshipHumansdrug design and developmentPharmacologybiologyAcrylonitrileChemistryArylOrganic ChemistryCell Cyclecomputer assisted drug designGeneral MedicineCell cycleTriazolesTubulinPodophyllotoxinCell cultureTubulin Binding Agentbiology.proteinTriazoleColchicineK562 CellsHumanmedicine.drug

description

During a screening for compounds that could act against Mycobacterium tuberculosis, a series of new cellular antiproliferative agents was identified. The most cytotoxic molecules were evaluated against a panel of human cell lines derived from hematological and solid human tumors. In particular, (E)-2-(1H-benzo[d] [1,2,3]triazol-1-yl)-3-(4-methoxyphenyl)acrylonitrile (1) was found to be of a potency comparable to etoposide and greater than 6-mercaptopurine in all cell lines tested. Accordingly, a synthesis of a new series of (E)-2-(5,6-dichloro-1H-benzo[d] [1,2,3]triazol-1-yl)-3-(4-R-phenyl)acrylonitriles was conducted in order to extend the studies of structure-activity relationship (SAR) for this class of molecules. With the aim to evaluate if 3-aryl-2-[1H-benzotriazol-1-yl]acrylonitriles were able to act like tubulin binding agents, the effects on cell cycle distribution of the most active compounds (1, 2a, 3 and 4) were analyzed in K562 cells. A detailed molecular modeling study of the putative binding mode of this series of compounds on tubulin is also reported.

10.1016/j.ejmech.2011.06.018https://pubmed.ncbi.nlm.nih.gov/21741130