6533b829fe1ef96bd12896df

RESEARCH PRODUCT

Spectroscopic studies of the(4)1Σ+state of RbCs and modeling of the optical cycle for ultracoldX 1Σ+(v=0,J=0)molecule production

O. DocenkoVladimir V. MeshkovV. ZutersRuvin FerberAndrey V. StolyarovM. TamanisE. A. Pazyuk

subject

PhysicsRelative intensityMoleculeProduction (computer science)State (functional analysis)Atomic physicsGround stateAtomic and Molecular Physics and Optics

description

We performed high-resolution Fourier-transform spectroscopy measurements and direct-potential-fit of the shelflike RbCs $(4){\phantom{\rule{0.16em}{0ex}}}^{1}{\ensuremath{\Sigma}}^{+}$ state. Overall, 2317 rovibronic ${v}^{\ensuremath{'}},{J}^{\ensuremath{'}}$ term values with ${v}^{\ensuremath{'}}\ensuremath{\in}[3,88]$, ${J}^{\ensuremath{'}}\ensuremath{\in}[7,276]$ were obtained with accuracy 0.01 cm${}^{\ensuremath{-}1}$ from the $(4){\phantom{\rule{0.16em}{0ex}}}^{1}{\ensuremath{\Sigma}}^{+}\ensuremath{\rightarrow}X{\phantom{\rule{0.16em}{0ex}}}^{1}{\ensuremath{\Sigma}}^{+},a{\phantom{\rule{0.16em}{0ex}}}^{3}{\ensuremath{\Sigma}}^{+}$ laser-induced fluorescence (LIF) spectra. The mass-invariant potential energy curve constructed by means of the Chebyshev polynomial expansion reproduced the experimental term values of both ${}^{85}$Rb${\phantom{\rule{0.16em}{0ex}}}^{133}$Cs and ${}^{87}$Rb${\phantom{\rule{0.16em}{0ex}}}^{133}$Cs isotopologues with a standard deviation of 0.005 cm${}^{\ensuremath{-}1}$. We simulated the optical cycle $X{\phantom{\rule{0.16em}{0ex}}}^{1}{\ensuremath{\Sigma}}^{+},a{\phantom{\rule{0.16em}{0ex}}}^{3}{\ensuremath{\Sigma}}^{+}({v}^{\ensuremath{'}\ensuremath{'}},{J}^{\ensuremath{'}\ensuremath{'}}=0)\ensuremath{\rightarrow}(4){\phantom{\rule{0.16em}{0ex}}}^{1}{\ensuremath{\Sigma}}^{+}({v}^{\ensuremath{'}},{J}^{\ensuremath{'}}=1)\ensuremath{\rightarrow}X{\phantom{\rule{0.16em}{0ex}}}^{1}{\ensuremath{\Sigma}}^{+}({v}^{\ensuremath{'}\ensuremath{'}}=0,{J}^{\ensuremath{'}\ensuremath{'}}=0)$ appropriate to transfer translationally ultracold RbCs molecules into their absolute ground state from the weakly bound rovibronic levels of both singlet $X{\phantom{\rule{0.16em}{0ex}}}^{1}{\ensuremath{\Sigma}}^{+}$ and triplet $a{\phantom{\rule{0.16em}{0ex}}}^{3}{\ensuremath{\Sigma}}^{+}$ ground states. The optimal transfer via the intermediate $(4){\phantom{\rule{0.16em}{0ex}}}^{1}{\ensuremath{\Sigma}}^{+}$ state with ${v}^{\ensuremath{'}}=58,60$, and 61 for ${}^{85}$Rb${\phantom{\rule{0.16em}{0ex}}}^{133}$Cs as well as ${v}^{\ensuremath{'}}=59$ and 61 for ${}^{87}$Rb${\phantom{\rule{0.16em}{0ex}}}^{133}$Cs was predicted. The required spin-allowed $(4){\phantom{\rule{0.16em}{0ex}}}^{1}{\ensuremath{\Sigma}}^{+}\ensuremath{-}X{\phantom{\rule{0.16em}{0ex}}}^{1}{\ensuremath{\Sigma}}^{+}$ and spin-forbidden $(4){\phantom{\rule{0.16em}{0ex}}}^{1}{\ensuremath{\Sigma}}^{+}\ensuremath{-}a{\phantom{\rule{0.16em}{0ex}}}^{3}{\ensuremath{\Sigma}}^{+}$ dipole transition moments were obtained within the framework of ab initio quasirelativistic calculations. The predicted $(4){\phantom{\rule{0.16em}{0ex}}}^{1}{\ensuremath{\Sigma}}^{+}\ensuremath{\rightarrow}X{\phantom{\rule{0.16em}{0ex}}}^{1}{\ensuremath{\Sigma}}^{+},a{\phantom{\rule{0.16em}{0ex}}}^{3}{\ensuremath{\Sigma}}^{+}$ transition probabilities were consistent with the experimental relative intensity distributions for several $(4){\phantom{\rule{0.16em}{0ex}}}^{1}{\ensuremath{\Sigma}}^{+}({v}^{\ensuremath{'}})\ensuremath{\rightarrow}X,a({v}^{\ensuremath{'}\ensuremath{'}})$ LIF progressions.

https://doi.org/10.1103/physreva.87.022504