6533b829fe1ef96bd1289942

RESEARCH PRODUCT

Bioactive glass ions as strong enhancers of osteogenic differentiation in human adipose stem cells.

Reija AutioMinna KellomäkiHeikki HäkkänenSusanna MiettinenLeena HupaMiina OjansivuMiina OjansivuLeena BjörkvikJanne A. IhalainenSari Vanhatupa

subject

MineralizationMaterials scienceBiomedical EngineeringAdipose tissuechemistry.chemical_elementBiocompatible MaterialsCalciumta3111BiochemistryBone tissue engineeringlaw.inventionBiomaterialsExtracellular matrixlawOsteogenic differentiationHumansBioactive glassMolecular Biologyta217Mesenchymal stem cellCell ProliferationIonsStem CellsMesenchymal stem cellta1182Cell DifferentiationGeneral MedicineIn vitroCell biologychemistryAdipose TissueBioactive glassAlkaline phosphataseGlassStem cellBiotechnologyBiomedical engineering

description

Bioactive glasses are known for their ability to induce osteogenic differentiation of stem cells. To elucidate the mechanism of the osteoinductivity in more detail, we studied whether ionic extracts prepared from a commercial glass S53P4 and from three experimental glasses (2-06, 1-06 and 3-06) are alone sufficient to induce osteogenic differentiation of human adipose stem cells. Cells were cultured using basic medium or osteogenic medium as extract basis. Our results indicate that cells stay viable in all the glass extracts for the whole culturing period, 14 days. At 14 days the mineralization in osteogenic medium extracts was excessive compared to the control. Parallel to the increased mineralization we observed a decrease in the cell amount. Raman and Laser Induced Breakdown Spectroscopy analyses confirmed that the mineral consisted of calcium phosphates. Consistently, the osteogenic medium extracts also increased osteocalcin production and collagen Type-I accumulation in the extracellular matrix at 13 days. Of the four osteogenic medium extracts, 2-06 and 3-06 induced the best responses of osteogenesis. However, regardless of the enhanced mineral formation, alkaline phosphatase activity was not promoted by the extracts. The osteogenic medium extracts could potentially provide a fast and effective way to differentiate human adipose stem cells in vitro.

10.1016/j.actbio.2015.04.017https://pubmed.ncbi.nlm.nih.gov/25900445