6533b829fe1ef96bd128a430
RESEARCH PRODUCT
Set valued Kurzweil-Henstock-Pettis integral
K. MusiałL. Di Piazzasubject
Pettis integralKurzweil–Henstock integralMathematics::Functional AnalysisPure mathematicsGeneralizationApplied MathematicsMathematical analysisKurzweil–Henstock–Pettis integralMathematics::Classical Analysis and ODEsRegular polygonselectionRiemann–Stieltjes integralRiemann integralSupport functionLebesgue integrationsupport functionsymbols.namesakemultifunctionPettis set-valued integralsymbolsMathematics::Metric GeometryDaniell integralAnalysisMathematicsdescription
It is shown that the obvious generalization of the Pettis integral of a multifunction obtained by replacing the Lebesgue integrability of the support functions by the Kurzweil--Henstock integrability, produces an integral which can be described -- in case of multifunctions with (weakly) compact convex values -- in terms of the Pettis set-valued integral.
year | journal | country | edition | language |
---|---|---|---|---|
2005-06-01 |