6533b829fe1ef96bd128a430

RESEARCH PRODUCT

Set valued Kurzweil-Henstock-Pettis integral

K. MusiałL. Di Piazza

subject

Pettis integralKurzweil–Henstock integralMathematics::Functional AnalysisPure mathematicsGeneralizationApplied MathematicsMathematical analysisKurzweil–Henstock–Pettis integralMathematics::Classical Analysis and ODEsRegular polygonselectionRiemann–Stieltjes integralRiemann integralSupport functionLebesgue integrationsupport functionsymbols.namesakemultifunctionPettis set-valued integralsymbolsMathematics::Metric GeometryDaniell integralAnalysisMathematics

description

It is shown that the obvious generalization of the Pettis integral of a multifunction obtained by replacing the Lebesgue integrability of the support functions by the Kurzweil--Henstock integrability, produces an integral which can be described -- in case of multifunctions with (weakly) compact convex values -- in terms of the Pettis set-valued integral.

10.1007/s11228-004-0934-0http://hdl.handle.net/10447/18025