6533b829fe1ef96bd128a566
RESEARCH PRODUCT
Insight into mechanisms of creatinine optical sensing using fluorescein-gold complex
Sara AnselmoGiuseppe De LucaVittorio FerraraBruno PignataroGiuseppe SancataldoValeria Vetrisubject
optical sensingNylonsfluoresceinCreatinineHumansColorimetryGeneral Materials ScienceGoldInstrumentationSettore FIS/07 - Fisica Applicata(Beni Culturali Ambientali Biol.e Medicin)SpectroscopyAtomic and Molecular Physics and OpticsSettore CHIM/02 - Chimica Fisicadescription
Abstract Creatinine level in biological fluids is a clinically relevant parameter to monitor vital functions and it is well assessed that measuring creatinine levels in the human body can be of great utility to evaluate renal, muscular, or thyroid dysfunctions. The accurate detection of creatinine levels may have a critical role in providing information on health status and represents a tool for the early diagnosis of severe pathologies. Among different methods for creatinine detection that have been introduced and that are evolving with increasing speed, fluorescence-based and colorimetric sensors represent one of the best alternatives, thanks to their affordability, sensitivity and easy readability. In this work, we demonstrate that the fluorescein-Au3+ complex provides a rapid, selective, and sensitive tool for the quantification of creatinine concentrations in ranges typical of sweat and urine. UV-visible absorption, diffuse reflectance spectroscopy, steady state and time resolved fluorescence spectroscopy were used to shed light on the molecular mechanisms involved in the changes of optical properties, which underlie the multiplexed sensor analytical reply. Interestingly, sensing can be performed in solution or on solid nylon support accessing different physiological concentrations from micromolar to millimolar range. As a proof-of-concept, the nylon-based platform was used to demonstrate its effectiveness in creatinine detection on a solid and flexible substrate, showing its analytical colorimetric properties as an easy and disposable creatinine point-of-care test.
year | journal | country | edition | language |
---|---|---|---|---|
2022-08-05 | Methods and Applications in Fluorescence |