0000000000123026
AUTHOR
Giuseppe Sancataldo
Swift light sheet volumetric charting of large human brain portions
Using a custom light sheet fluorescence microscope, we image large stained human brain portions, labelled for NeuN and GAD67 neuronal markers, discerning the inhibitory population via neural-network based image analysis and exposing the brain connectivity.
Oxidative alteration of Human Serum Albumin Amyloid Aggregation Pathway
Improved Photocatalytic Activity of Polysiloxane TiO2 Composites by Thermally Induced Nanoparticle Bulk Clustering and Dye Adsorption
Fine control of nanoparticle clustering within polymeric matrices can be tuned to enhance the physicochemical properties of the resulting composites, which are governed by the interplay of nanoparticle surface segregation and bulk clustering. To this aim, out-of-equilibrium strategies can be leveraged to program the multiscale organization of such systems. Here, we present experimental results indicating that bulk assembly of highly photoactive clusters of titanium dioxide nanoparticles within an in situ synthesized polysiloxane matrix can be thermally tuned. Remarkably, the controlled nanoparticle clustering results in improved degradation photocatalytic performances of the material under …
Phasor FLIM analysis of Thioflavin T fluorescence in protein amyloid aggregates: Mapping molecular interactions.
Thioflavin T (ThT) is a worldwide used dye to monitor protein aggregation as it stains with a certain specificity amyloid structures. The interactions between ThT and its hosts are largely studied suggesting that fluorescence properties of this dye critically depend both on the environment rigidity, electrostatic and hydrophobic properties as well as on molecular details binding site structure. Here FLIM and phasor approach analysis are used to exploit ThT amyloid interactions and, in turn, to address polymorphism and structural heterogeneity of amyloid species mapping aggregate-to-aggregate structural differences and revealing details of molecular architecture within the same aggregate.
Fast Inertia-Free Volumetric Light-Sheet Microscope
Fast noninvasive three-dimensional (3D) imag-ing is crucial for quantitatively studying highly dynamic events ranging from flow cytometry to developmental biology. Light-sheet microscopy has emerged as the tool-of-choice for 3D characterization of rapidly evolving systems. However, to obtain a 3D image, either the sample or parts of the microscope are moved, limiting the acquisition speed. Here, we propose a novel inertia-free light-sheet-based scheme for volumetric imaging at high temporal resolution. Our approach comprises a novel combination of an acousto-optic scanner to produce tailored illumination and an acoustic-optofluidic lens, placed in the detection path to provide extended dept…
Light Sheet Fluorescence Microscopy (LSFM) for Two-Photon Excitation Imaging of Thick Samples.
Over the last decades, fluorescence microscopy techniques have been developed in order to provide a deeper, faster and higher resolution imaging of three-dimensional biological samples. Within this framework, Light Sheet Fluorescence Microscopy (LSFM) became an increasingly useful and popular imaging technique able to answer several biological questions in the field of developmental biology [1]. Thanks to the spatial confinement of the excitation process within a thin sheet in the focal plane, it provides an intrinsic optical sectioning and a reduced phototoxicity. On the other side, Two-Photon Excitation (2PE), thanks to the use of IR wavelengths, has become an invaluable tool to improve i…
Direct activation of zebrafish neurons by ultrasonic stimulation revealed by whole CNS calcium imaging
Abstract Objective. Ultrasounds (US) use in neural engineering is so far mainly limited to ablation through high intensity focused ultrasound, but interesting preliminary results show that low intensity low frequency ultrasound could be used instead to modulate neural activity. However, the extent of this modulatory ability of US is still unclear, as in in vivo studies it is hard to disentangle the contribution to neural responses of direct activation of the neuron by US stimulation and indirect activation due either to sensory response to mechanical stimulation associated to US, or to propagation of activity from neighboring areas. Here, we aim to show how to separate the three effects and…
Lead(II) ions adsorption onto amyloid particulates: An in depth study
The production of new cost-effective biocompatible sorbent sustainable materials, with natural origins, able to remove heavy metals from water resources is nowadays highly desirable in order to reduce pollution and increase clean water availability. In this context, self-assembled protein materials with amyloid structures seem to have a great potential as natural platform for a broader development of highly-tunable structures. In this work we show how protein particulates, a generic form of protein aggregates, with spherical micro sized shape can be used as adsorbents of Pb2+ ions from aqueous solution. The effect of pH, ionic medium, ionic strength and temperature of the metal ion solution…
Confocal and Two-Photon Spectroscopy
The spectroscopic analysis of bulk samples provides useful information at the mesoscopic scale that can be fostered when coupled with microscopy, which allows to integrate the spatial information in the analysis, this being of utmost importance for non‐homogeneous samples. Technologies such as confocal and two‐photon microscopy quickly became mainstream methods as they provide the possibility of noninvasive real‐time analysis of specimens of different nature, eliciting specific features even in samples with non‐ergodic behaviour. The spatial resolution of optical microscopy has its roots in the diffraction of light on the objective lens of the imaging system. Fluorescence microscopy is an o…
3D MICROSIZED PROTEIN AMYLOID PARTICULATES AS EFFECTIVE BIOADSORBERS FOR Pb2+ IONS
The production of new cost-effective biocompatible sorbent sustainable materials, with natural origins, able to remove heavy metals from water resources is nowadays highly desirable in order to reduce pollution and increase clean water availability. In this context, self-assembled protein materials with highly ordered amyloid structures, stabilised by H-bonds, seems to have a great potential as natural platform for a broader development of highly-tunable structures. By suitably varying solution conditions it is possible to tune aggregate size, surface area and morphologies as well as their physicochemical (hydrophobicity, hydrophilicity, swelling/deswelling properties) and mechanical proper…
Phasor-FLIM analysis of Thioflavin T self-quenching in Concanavalin amyloid fibrils
The formation of amyloid structures has traditionally been related to human neurodegenerative pathologies and, in recent years, the interest in these highly stable nanostructures was extended to biomaterial sciences. A common method to monitor amyloid growth is the analysis of Thioflavin T fluorescence. The use of this highly selective dye, diffused worldwide, allows mechanistic studies of supramolecular assemblies also giving back important insight on the structure of these aggregates. Here we present experimental evidence of self-quenching effect of Thioflavin T in presence of amyloid fibrils. A significant reduction of fluorescence lifetime of this dye which is not related to the propert…
TRANSPORTAN 10 INTERACTION WITH GIANT VESICLES: INSERTION EFFECTS AND PORE FORMATION
Transportan 10 (TP10) is a 21 residues peptide that belongs to the family of the antimicrobial and cytolytic or cytotoxic amphipathic peptides. It contains a high proportion of positively charged amino acids (four lysines), no negative charges and the N-terminus that impart it a formal +5 charge at neutral pH.1 This large number of positive charges is an essential feature for the electrostatic interaction of TP10 with microbial and tumoral membranes, which are characherized by a net negative charge and also by a higher fluidity if compared with mammalin ones.2 Here, combining spectroscopic and fluorescence lifetime imaging techniques, we analyse the fate of the multifunctional3-4 TP10 and i…
Power-effective scanning with AODs for 3D optogenic applications
Two-photon (2P) excitation is a cornerstone approach widely employed in neuroscience microscopy for deep optical access and sub-micrometric-resolution light targeting into the brain. However, besides structural and functional imaging, 2P optogenetic stimulations are less routinary, especially in 3D. This is because of the adopted scanning systems, often feebly effective, slow and mechanically constricted. Faster illumination can be achieved through acousto-optic deflectors (AODs) although their applicability to large volumes excitation has been limited by large efficiency drop along the optical axis. Here, we present a new AOD-based scheme for 2P 3D scanning that improves the power delivery…
α-casein micelles-membranes interaction: Flower-like lipid protein coaggregates formation
Background: Environmental conditions regulate the association/aggregation states of proteins and their action in cellular compartments. Analysing protein behaviour in presence of lipid membranes is fundamental for the comprehension of many functional and dysfunctional processes. Here, we present an experimental study on the interaction between model membranes and α-casein. α-casein is the major component of milk proteins and it is recognised to play a key role in performing biological functions. The conformational properties of this protein and its capability to form supramolecular structures, like micelles or irreversible aggregates, are key effectors in functional and pathological effects…
Fast multi-directional DSLM for confocal detection without striping artifacts
In recent years light-sheet fluorescence microscopy (LSFM) has become a cornerstone technology for neuroscience, improving the quality and capabilities of 3D imaging. By selectively illuminating a single plane, it provides intrinsic optical sectioning and fast image recording, while minimizing out of focus fluorescence background, sample photo-damage and photo-bleaching. However, images acquired with LSFM are often affected by light absorption or scattering effects, leading to un-even illumination and striping artifacts. In this work we present an optical solution to this problem, via fast multi-directional illumination of the sample, based on an acousto-optical deflector (AOD). We demonstr…
A Guide to Perform 3D Histology of Biological Tissues with Fluorescence Microscopy
The analysis of histological alterations in all types of tissue is of primary importance in pathology for highly accurate and robust diagnosis. Recent advances in tissue clearing and fluorescence microscopy made the study of the anatomy of biological tissue possible in three dimensions. The combination of these techniques with classical hematoxylin and eosin (H&E) staining has led to the birth of three-dimensional (3D) histology. Here, we present an overview of the state-of-the-art methods, highlighting the optimal combinations of different clearing methods and advanced fluorescence microscopy techniques for the investigation of all types of biological tissues. We employed fluorescence …
Two-photon light-sheet microscopy for high-speed whole-brain functional imaging of zebrafish neuronal physiology and pathology
We present the development of a custom-made two-photon light-sheet microscope optimized for high-speed (5 Hz) volumetric imaging of zebrafish larval brain for the analysis of neuronal physiological and pathological activity. High-speed volumetric two-photon light-sheet microscopy is challenging to achieve, due to constrains on the signal-to-noise ratio. To maximize this parameter, we optimized our setup for high peak power of excitation light, while finely controlling its polarization, and we implemented remote scanning of the focal plane to record without disturbing the sample. Two-photon illumination is advantageous for zebrafish larva studies since infra-red excitation does not induce a …
Proinflammatory and amyloidogenic S100A9 induced by traumatic brain injury in mouse model.
Traumatic brain injury (TBI) represents a significant risk factor for development of neurodegenerative diseases such as Alzheimer’s and Parkinson’s. The S100A9-driven amyloid-neuroinflammatory cascade occurring during primary and secondary TBI events can serve as a mechanistic link between TBI and Alzheimer’s as demonstrated recently in the human brain tissues. Here by using immunohistochemistry in the controlled cortical impact TBI mouse model we have found pro-inflammatory S100A9 in the brain tissues of all mice on the first and third post-TBI days, while 70% of mice did not show any S100A9 presence on seventh post-TBI day similar to controls. This indicates that defensive mechanisms effe…
3D nanometric particle tracking over tunable axial ranges
The precise localization of nanometric objects in three dimensions is essential to identify functional diffusion mechanisms in complex systems at the cellular or molecular level. However, most optical methods can achieve high temporal resolution and high localization precision only in two dimensions or over a limited axial range. Here we develop a novel wide-field detection system based on an electrically tunable lens that can track multiple individual nanoscale emitters in three dimensions over a tunable axial range with nanometric localization precision. The optical principle of the technique is based on the simultaneous acquisition of two images with an extended depth of field while enco…
Fast whole-brain imaging of seizures in zebrafish larvae by two-photon light-sheet microscopy
Light-sheet fluorescence microscopy (LSFM) enables real-time whole-brain functional imaging in zebrafish larvae. Conventional one photon LSFM can however induce undesirable visual stimulation due to the use of visible excitation light. The use of two-photon (2P) excitation, employing near-infrared invisible light, provides unbiased investigation of neuronal circuit dynamics. However, due to the low efficiency of the 2P absorption process, the imaging speed of this technique is typically limited by the signal-to-noise-ratio. Here, we describe a 2P LSFM setup designed for non-invasive imaging that enables quintuplicating state-of-the-art volumetric acquisition rate of the larval zebrafish bra…
Nano-structured myelin: new nanovesicles for targeted delivery to white matter and microglia, from brain-to-brain
Neurodegenerative diseases affect millions of people worldwide and the presence of various physiological barriers limits the accessibility to the brain and reduces the efficacy of various therapies. Moreover, new carriers having targeting properties to specific brain regions and cells are needed in order to improve therapies for the brain disorder treatment. In this study, for the first time, Myelin nanoVesicles (hereafter defined MyVes) from brain-extracted myelin were produced. The MyVes have an average diameter of 100–150 nm, negative zeta potential, spheroidal morphology, and contain lipids and the key proteins of the myelin sheath. Furthermore, they exhibit good cytocompatibility. The…
Advanced fluorescence microscopy for in vivo imaging of neuronal activity
Brain function emerges from the coordinated activity, over time, of large neuronal populations placed in different brain regions. Understanding the relationships of these specific areas and disentangling the contributions of individual neurons to overall function remain central goals for neuroscience. In this scenario, fluorescence microscopy has been proved as the tool of choice for in vivo recording of brain activity. Optical advances combined with genetically encoded indicators allow a large flexibility in terms of spatiotemporal resolution and field of view while keeping invasiveness in living animals to a minimum. Here we describe the latest advancements in the field of linear and nonl…
Insight into mechanisms of creatinine optical sensing using fluorescein-gold complex
Abstract Creatinine level in biological fluids is a clinically relevant parameter to monitor vital functions and it is well assessed that measuring creatinine levels in the human body can be of great utility to evaluate renal, muscular, or thyroid dysfunctions. The accurate detection of creatinine levels may have a critical role in providing information on health status and represents a tool for the early diagnosis of severe pathologies. Among different methods for creatinine detection that have been introduced and that are evolving with increasing speed, fluorescence-based and colorimetric sensors represent one of the best alternatives, thanks to their affordability, sensitivity and easy r…
Laser-Fabricated Fluorescent, Ligand-Free Silicon Nanoparticles: Scale-up, Biosafety, and 3D Live Imaging of Zebrafish under Development
This work rationalizes the scalable synthesis of ultrasmall, ligand-free silicon nanomaterials via liquid-phase pulsed laser ablation process using picosecond pulses at ultraviolet wavelengths. Results showed that the irradiation time drives hydrodynamic NP size. Isolated, monodisperse Si-NPs are obtained at high yield (72%) using post-treatment process. The obtained Si-NPs have an average size of 10 nm (not aggregated) and display photoemission in the green spectral range. We directly characterized the ligand-free Si-NPs in a vertebrate animal (zebrafish) and assessed their toxicity during the development. In vivo assay revealed that Si-NPs are found inside in all the early life stages of …
Three-dimensional multiple-particle tracking with nanometric precision over tunable axial ranges
The precise localization of nanometric objects in three dimensions is essential to identify functional diffusion mechanisms in complex systems at the cellular or molecular level. However, most optical methods can achieve high temporal resolution and high localization precision only in two dimensions or over a limited axial (z) range. Here we develop a novel wide-field detection system based on an electrically tunable lens that can track multiple individual nanoscale emitters in three dimensions over a tunable axial range with nanometric localization precision. The optical principle of the technique is based on the simultaneous acquisition of two images with an extended depth of field while …
A combined physical-chemical and microbiological approach to unveil the fabrication, provenance, and state of conservation of the Kinkarakawa-gami art.
AbstractKinkarakawa-gami wallpapers are unique works of art produced in Japan between 1870 and 1905 and exported in European countries, although only few examples are nowadays present in Europe. So far, neither the wallpapers nor the composing materials have been characterised, limiting the effective conservation–restoration of these artefacts accounting also for the potential deteriogen effects of microorganisms populating them. In the present study, four Kinkarakawa-gami wallpapers were analysed combining physical–chemical and microbiological approaches to obtain information regarding the artefacts’ manufacture, composition, dating, and their microbial community. The validity of these met…
Oxidation Enhances Human Serum Albumin Thermal Stability and Changes the Routes of Amyloid Fibril Formation
Oxidative damages are linked to several aging-related diseases and are among the chemical pathways determining protein degradation. Specifically, interplay of oxidative stress and protein aggregation is recognized to have a link to the loss of cellular function in pathologies like Alzheimer's and Parkinson's diseases. Interaction between protein and reactive oxygen species may indeed induce small changes in protein structure and lead to the inhibition/modification of protein aggregation process, potentially determining the formation of species with different inherent toxicity. Understanding the temperate relationship between these events can be of utmost importance in unraveling the molecul…
Oxidation effects in antiaggregogenic properties of Epigallocatechingallate
Epigallocatechin-gallate (EGCG), the most abundant flavonoid in green tea, has been extensively studied for its potential in the treatment of amyloid related disorders. This molecule was found to modulate abnormal protein self-assembly, reducing resulting cellular toxicity. EGCG is known to suppress or to slow down the aggregation processes of several proteins, thus supporting the idea that general mechanisms regulate its anti-aggregogenic effects and, interestingly, in the oxidised form it demonstrated an higher efficiency in reducing protein aggregation with respect to intact molecule. We here investigate the effects of intact and oxidized EGCG the thermal aggregation pathway of Bovine Se…
Dual-beam confocal light-sheet microscopy via flexible acousto-optic deflector
Confocal detection in digital scanned laser light-sheet fluorescence microscopy (DSLM) has been established as a gold standard method to improve image quality. The selective line detection of a complementary metal-oxide-semiconductor camera (CMOS) working in rolling shutter mode allows the rejection of out-of-focus and scattered light, thus reducing background signal during image formation. Most modern CMOS have two rolling shutters, but usually only a single illuminating beam is used, halving the maximum obtainable frame rate. We report on the capability to recover the full image acquisition rate via dual confocal DSLM by using an acoustooptic deflector. Such a simple solution enables us t…
Engineered Ferritin with Eu3+ as a Bright Nanovector: A Photoluminescence Study
Ferritin nanoparticles play many important roles in theranostic and bioengineering applications and have been successfully used as nanovectors for the targeted delivery of drugs due to their ability to specifically bind the transferrin receptor (TfR1, or CD71). They can be either genetically or chemically modified for encapsulating therapeutics or probes in their inner cavity. Here, we analyzed a new engineered ferritin nanoparticle, made of the H chain mouse ferritin (HFt) fused with a specific lanthanide binding tag (LBT). The HFt-LBT has one high affinity lanthanide binding site per each of the 24 subunits and a tryptophane residue within the tag that acts as an antenna able to transfer …
4D (x-y-z-t) imaging of thick biological samples by means of Two-Photon inverted Selective Plane Illumination Microscopy (2PE-iSPIM)
AbstractIn the last decade light sheet fluorescence microscopy techniques, such as selective plane illumination microscopy (SPIM), has become a well established method for developmental biology. However, conventional SPIM architectures hardly permit imaging of certain tissues since the common sample mounting procedure, based on gel embedding, could interfere with the sample morphology. In this work we propose an inverted selective plane microscopy system (iSPIM), based on non-linear excitation, suitable for 3D tissue imaging. First, the iSPIM architecture provides flexibility on the sample mounting, getting rid of the gel-based mounting typical of conventional SPIM, permitting 3D imaging of…
Biocompatibility and biodistribution of functionalized carbon nano-onions (f-CNOs) in a vertebrate model
AbstractFunctionalized carbon nano-onions (f-CNOs) are of great interest as platforms for imaging, diagnostic and therapeutic applications due to their high cellular uptake and low cytotoxicity. To date, the toxicological effects of f-CNOs on vertebrates have not been reported. In this study, the possible biological impact of f-CNOs on zebrafish during development is investigated, evaluating different toxicity end-points such as the survival rate, hatching rate, and heart beat rate. Furthermore, a bio-distribution study of boron dipyrromethene (BODIPY) functionalized CNOs in zebrafish larvae is performed by utilizing inverted selective plane illumination microscopy (iSPIM), due to its intri…
Influence of Nanoparticle Exposure on Nervous System Development in Zebrafish Studied by Means of Light Sheet Fluorescence Microscopy
Zebrafish has a remarkable similarity in the molecular signaling processes, cellular structure, anatomy and physiology to other higher order vertebrates, making it an excellent vertebrate model organism (1). Recently, zebrafish has been used for neurotoxicity screening of numerous nanomaterials with a focus on the developmental effects due to the possibility of in vivo visualization of specific neurons and axon tracts by injecting dyes in live animals as well in fixed ones (2). Here we propose Light Sheet Fluorescence Microscopy (LSFM) (3) (4) to perform neurotoxicity studies, in order to study the nervous system architecture and to image 3D structures in the brain of live larvae during the…
Blue light activated photodegradation of biomacromolecules by N-doped titanium dioxide in a chitosan hydrogel matrix
The use of photocatalysis activated by titanium dioxide nanostructured materials is a promising solution for many biomedical applications ranging from drug-free antibacterial to anticancer therapies, as well as for innovative hydrogel-supported phototherapies. This makes the effects of photocatalysis on the structure of biomolecules of a great relevance in order to define the applicability of photocatalytic materials in the biomedical fields. In this work, the effects of nitrogen-doped titanium dioxide (N-TiO2) dispersed in a biocompatible chitosan/PEG hydrogel on myoglobin and bovine serum albumin as target model proteins were investigated. The efficiency of this composite biocompatible ma…
Phasor-FLIM for a direct investigation of Transportan 10 interactions with model membranes
Transportan 10 (TP10), a short and positive charged peptide, belonging to the family of the cell penetrating peptides has gained increasing attention for its antimicrobial and anticancer activity but also for its applications in drug delivery as it is able to translocate therapeutic molecules in cellular environment. Due to the complexity of the phenomena involved in cellular uptake and following processes, which strongly depend on the membrane lipid composition, structural details of the peptide (e.g., charge, hydrophobicity, steric hindrance) and environmental conditions, it is not easy to understand the general rules governing them. Here, we combine spectroscopic techniques and fluoresce…
UV-induced modifications in collagen fibers molecular structure: a fluorescence spectroscopy and microscopy study
Sustainable soy protein microsponges for efficient removal of lead (II) from aqueous environments
Protein-based materials recently emerged as good candidates for water cleaning applications, due to the large availability of the constituent material, their biocompatibility and the ease of preparation. In this work, new adsorbent biomaterials were created from Soy Protein Isolate (SPI) in aqueous solution using a simple environmentally friendly procedure. Protein microsponge-like structures were produced and characterized by means of spectroscopy and fluorescence microscopy methods. The efficiency of these structures in removing Pb2+ ions from aqueous solutions was evaluated by investigating the adsorption mechanisms. The molecular structure and, consequently, the physico-chemical propert…
Two-photon high-speed light-sheet volumetric imaging of brain activity during sleep in zebrafish larvae
Although it is well known that zebrafish display the behavioural signature of sleep, the neuronal correlates of this state are not yet completely understood, due to the complexity of the measurements required. For example, when performed with visible excitation light, functional imaging can disrupt the day/night cycle due to the induced visual stimulation. To address this issue, we developed a custom-made two-photon light-sheet microscope optimized for high-speed volumetric imaging. By employing infra-red light (not visible to the larva) for excitation, we are able to record wholebrain neuronal activity with high temporal- and spatial-resolution without affecting the sleep state. In two-pho…
Electrostatics regulate Epigallocatechin-Gallate effects on Bovine Serum Albumin aggregation
Protein aggregation processes are complex phenomena often involved in the etiology of several pathologies. It is now assessed that all proteins, in suitable conditions, may undergo supramolecular assembly. Aggregation pathways are known to be controlled by solution conditions which regulate protein-protein and protein-solvent interactions affecting binding mechanisms, morphology and inherent toxicity of the aggregate species. In this context, the presence of small molecules was indicated as a promising method to modulate protein-protein interactions reducing pathogenic aggregation. In the light of the idea that common mechanisms regulate anti-aggregogenic properties of small molecules, we h…
Identification of microplastics using 4‐dimethylamino‐4′‐nitrostilbene solvatochromic fluorescence
In this work, we introduce the use of 4-dimethylamino-4'-nitrostilbene (DANS) fluorescent dye for applications in the detection and analysis of microplastics, an impendent source of pollution made of synthetic organic polymers with a size varying from less than 5 mm to nanometer scale. The use of this dye revealed itself as a versatile, fast and sensitive tool for readily discriminate microplastics in water environment. The experimental evidences herein presented demonstrate that DANS efficiently absorbs into a variety of polymers constituting microplastics, and its solvatochromic properties lead to a positive shift of the fluorescence emission spectrum according to the polarity of the poly…
Flexible multi-beam light-sheet fluorescence microscope for live imaging without striping artifacts
The development of light-sheet fluorescence microscopy (LSFM) has greatly expanded the experimental capabilities in many biological and biomedical research fields, enabling for example live studies of murine and zebrafish neural activity or of cell growth and division. The key feature of the method is the selective illumination of a sample single plane, providing an intrinsic optical sectioning and allowing direct 2D image recording. On the other hand, this excitation scheme is more affected by absorption or scattering artifacts in comparison to point scanning methods, leading to un-even illumination. We present here an easily implementable method, based on acousto-optical deflectors (AOD),…
Removing striping artifacts in light-sheet fluorescence microscopy: a review
Abstract In recent years, light-sheet fluorescence microscopy (LSFM) has found a broad application for imaging of diverse biological samples, ranging from sub-cellular structures to whole animals, both in-vivo and ex-vivo, owing to its many advantages relative to point-scanning methods. By providing the selective illumination of sample single planes, LSFM achieves an intrinsic optical sectioning and direct 2D image acquisition, with low out-of-focus fluorescence background, sample photo-damage and photo-bleaching. On the other hand, such an illumination scheme is prone to light absorption or scattering effects, which lead to uneven illumination and striping artifacts in the images, oriented…
Nile Red lifetime reveals microplastic identity
Microplastic pollution is recognized as a worldwide environmental problem. The increasing daily use and release of plastics into the environment have led to the accumulation of fragmented microplastics, with potentially awful consequences for the environment, and animal and human health. The detection and identification of microplastics are of utmost importance, but available methods are still limited. In this work, a new approach is presented for the analysis of microplastics based on hydrophobic fluorescence staining with Nile Red, using spectrally resolved confocal fluorescence microscopy and fluorescence lifetime imaging microscopy (FLIM). Significant differences were observed in the em…
Transportan 10 Induces Perturbation and Pores Formation in Giant Plasma Membrane Vesicles Derived from Cancer Liver Cells
Continuous progress has been made in the development of new molecules for therapeutic purposes. This is driven by the need to address several challenges such as molecular instability and biocompatibility, difficulties in crossing the plasma membrane, and the development of host resistance. In this context, cell-penetrating peptides (CPPs) constitute a promising tool for the development of new therapies due to their intrinsic ability to deliver therapeutic molecules to cells and tissues. These short peptides have gained increasing attention for applications in drug delivery as well as for their antimicrobial and anticancer activity but the general rules regulating the events involved in cell…
Photocatalytic activity of N-doped TiO2-based materials embedded with gold NPs for applications in antibacterial photodynamic therapy (aPDT)
Antibacterial photodynamic therapy (aPDT) is a potential treatment for antibiotic-resistant bacterial infections. It is based on the photosensitization of bacterial cells with exogenous agents that, when exposed to light, produce reactive oxygen species (ROS), such as OH-, O2-, H2O2. ROS can induce complex oxidative-reductive chains of reactions, resulting in damage of cellular components in target tissues1. Photocatalysts, like inorganic semiconductor oxides, represent an interesting class of materials to design new strategies for aPTD. As exposed to light of proper wavelengths, photocatalysts induce the formation of electron-hole pairs capable of producing a cascade of reactions suitable …
Different a-casein association states and their interaction with lipid vesicles to study antibacterial activity
The interactions between caseins and lipid membranes are fundamental for the physiological function of these proteins. Moreover, the understanding of the underlying molecular mechanisms is of great interest for the development of new casein derived antimicrobial peptides. Indeed, it was already shown that peptides derived from caseins possess antibacterial activity but their mechanisms of action is still debated. Here, we present an experimental study on the interaction between model lipid membranes and a-casein by means of spectroscopy and fluorescence microscopy techniques. a-casein is an unfolded protein that due to its amphiphilic nature is known to self-assembly into non-stable micella…
Effect of cholesterol on the interaction between amphyphylic peptides and liposomes
With the rise of antibiotic resistance, antimicrobial peptides (AMPs) have been proposed as an alternative novel class of therapeutic agents. They are polycationic, with a net positive charge of more than +2, and they are characterized by amphipathic structures, with both a hydrophobic and a hydrophilic domain. These characteristics allow them to selectively bind to negatively charged lipids (largely present in bacteria, not in mammalian cells), via hydrophobic and electrostatic interactions. Moreover, mammalian cells are characterized by a high content of cholesterol. For this reason, here we present an experimental study on the effect of the presence of cholesterol on the capability of am…
Peptide–Membrane Interactions Monitored by Fluorescence Lifetime Imaging: A Study Case of Transportan 10
The interest on detailed analysis of peptide-membrane interactions is of great interest in both fundamental and applied sciences as these may relate to both functional and pathogenic events. Such interactions are highly dynamic and spatially heterogeneous, making the investigation of the associated phenomena highly complex. The specific properties of membranes and peptide structural details, together with environmental conditions, may determine different events at the membrane interface, which will drive the fate of the peptide-membrane system. Here, we use an experimental approach based on the combination of spectroscopy and fluorescence microscopy methods to characterize the interactions …
A Novel Fast Volumetric Light Sheet Microscopy
Fast noninvasive three-dimensional (3D) imaging is crucial for the quantitative understanding of highly dynamic biological processes. Over the last decades, several fluorescence microscopy techniques have been developed in order to provide a faster and deeper imaging of thick biological samples [1]. Within this framework, Light Sheet Fluorescence Microscopy (LSFM) has emerged as a powerful imaging tool for 3D imaging of thick samples ranging from single cells to entire animals [2,3].However, to obtain a 3D reconstruction either sample or microscope parts usually need to be moved limiting the acquisition speed and inducing possible interferences in volume recording. To solve this problem, he…
3D molecular phenotyping of cleared human brain tissues with light-sheet fluorescence microscopy
AbstractThe combination of optical tissue transparency with immunofluorescence allows the molecular characterization of biological tissues in 3D. However, adult human organs are particularly challenging to become transparent because of the autofluorescence contributions of aged tissues. To meet this challenge, we optimized SHORT (SWITCH—H2O2—antigen Retrieval—TDE), a procedure based on standard histological treatments in combination with a refined clearing procedure to clear and label portions of the human brain. 3D histological characterization with multiple molecules is performed on cleared samples with a combination of multi-colors and multi-rounds labeling. By performing fast 3D imaging…
HFt-LBT with Eu3+: a new nanovector for bioimaging applications
Probing ensemble polymorphism and single aggregate structural heterogeneity in insulin amyloid self-assembly.
Ensembles of protein aggregates are characterized by a nano- and micro-scale heterogeneity of the species. This diversity translates into a variety of effects that protein aggregates may have in biological systems, both in connection to neurodegenerative diseases and immunogenic risk of protein drug products. Moreover, this naturally occurring variety offers unique opportunities in the field of protein-based biomaterials. In the above-mentioned fields, the isolation and structural analysis of the different amyloid types within the same ensemble remain a priority, still representing a significant experimental challenge. Here we address such complexity in the case of insulin for its relevance…
Visualization_1
Volumetric recording of a single CRIW event shown as a selected subset of coronal sections. To produce the time lapse, original 16-bit depth images were converted into 8-bit and JPEG compressed. Scale bar: 100 ��m.
Visualization_2
3D rendering of the lag map shown in Fig. 4a. The lag value is color-coded as specified by the color bar. Scale bar: 100 ��m.
Visualization_1
Volumetric recording of a single CRIW event shown as a selected subset of coronal sections. To produce the time lapse, original 16-bit depth images were converted into 8-bit and JPEG compressed. Scale bar: 100 ��m.
Visualization_2
3D rendering of the lag map shown in Fig. 4a. The lag value is color-coded as specified by the color bar. Scale bar: 100 ��m.