6533b82afe1ef96bd128b65d
RESEARCH PRODUCT
Sequential Monte Carlo methods in Bayesian joint models for longitudinal and time-to-event data
Nicolas ChopinCarmen ArmeroDanilo AlvaresAnabel Fortesubject
Statistics and ProbabilityComputer sciencebusiness.industryBayesian probabilitySequential monte carlo methodsMachine learningcomputer.software_genre01 natural sciencesField (computer science)010104 statistics & probability03 medical and health sciences0302 clinical medicineEvent data030220 oncology & carcinogenesisStatistical analysisPersonalized medicineArtificial intelligence0101 mathematicsStatistics Probability and UncertaintybusinessJoint (audio engineering)Cartographycomputerdescription
The statistical analysis of the information generated by medical follow-up is a very important challenge in the field of personalized medicine. As the evolutionary course of a patient's disease progresses, his/her medical follow-up generates more and more information that should be processed immediately in order to review and update his/her prognosis and treatment. Hence, we focus on this update process through sequential inference methods for joint models of longitudinal and time-to-event data from a Bayesian perspective. More specifically, we propose the use of sequential Monte Carlo (SMC) methods for static parameter joint models with the intention of reducing computational time in each update of the full Bayesian inferential process. Our proposal is very general and can be easily applied to most popular joint models approaches. We illustrate the use of the presented sequential methodology in a joint model with competing risk events for a real scenario involving patients on mechanical ventilation in intensive care units (ICUs).
year | journal | country | edition | language |
---|---|---|---|---|
2020-05-23 | Statistical Modelling |