6533b82afe1ef96bd128c19d
RESEARCH PRODUCT
Dental stem cell signaling pathway activation in response to hydraulic calcium silicate-based endodontic cements: A systematic review of in vitro studies
José SanzFrancisco LozanoConcha Lopez-ginesDaniel MonleonMari Carmen LlenaLeopoldo Fornersubject
MAPK/ERK pathwayMaterials scienceCellDental CementsBiocompatible Materials02 engineering and technologySMADBiological FactorsDental Materials03 medical and health sciences0302 clinical medicineCa2+/calmodulin-dependent protein kinaseMedicine and Health SciencesmedicineHumansdental stem cellsGeneral Materials ScienceGeneral DentistryBiomedical and Dental MaterialsFOS: Clinical medicineSilicatesStem CellsIn vitro toxicologyWnt signaling pathwayEndodontics and Endodontologycalcium silicate-based cementsin vitroOxides030206 dentistryCalcium Compoundsbiomineralization021001 nanoscience & nanotechnologysignaling pathwaysChemicals and DrugsCell biologyDrug Combinationsmedicine.anatomical_structurebioactivityMechanics of MaterialsDentistryStem cellSignal transduction0210 nano-technologySignal Transductiondescription
Abstract Objective To present a qualitative synthesis of in vitro studies which analyzed human dental stem cell (DSC) molecular signaling pathway activation in response to hydraulic calcium silicate-based cements (HCSCs). Methods A systematic electronic search was performed in Medline, Scopus, Embase, Web of Science and SciELO databases on January 20 and last updated on March 20, 2020. In vitro studies assessing the implication of signaling pathways in activity related marker (gene/protein) expression and mineralization induced by HCSCs in contact with human DSCs were included. Results The search identified 277 preliminary results. After discarding duplicates, and screening of titles, abstracts, and full texts, 13 articles were considered eligible. All of the materials assessed by the included studies showed positive results in cytocompatibility and/or bioactivity assays. ProRoot MTA and Biodentine were the modal HCSCs studied, hDPSCs were the modal cell variant used, and the most studied signaling pathway was MAPK. In vitro assays measuring the expression of activity-related markers and mineralized nodule formation evidenced the involvement of MAPK (and its subfamilies ERK, JNK and P38), NF-κB, Wnt/β-catenin, BMP/Smad and CAMKII pathways in the biological response of DSCs to HCSCs. Significance HCSCs considered in the present review elicited a favorable biological response from a variety of DSCs in vitro, thus supporting their use in biologically-based endodontic procedures. MAPK, NF-κβ, Wnt/β-catenin, BMP/Smad and CAMKII signaling pathways have been proposed as potential mediators in the biological interaction between DSCs and HCSCs. Understanding the signaling processes involved in tissue repair could lead to the development of new biomaterial compositions targeted at enhancing these mechanisms through biologically-based procedures.
year | journal | country | edition | language |
---|---|---|---|---|
2020-10-04 | Dental Materials |