6533b82afe1ef96bd128c47a
RESEARCH PRODUCT
Measurement of the absolute branching fractions for purely leptonic D+s decays
Besiii CollaborationM. AblikimM. N. AchasovP. AdlarsonS. AhmedM. AlbrechtR. AlibertiA. AmorosoM. R. AnQ. AnX. H. BaiY. BaiO. BakinaR. Baldini FerroliI. BalossinoY. BanK. BegzsurenN. BergerM. BertaniD. BettoniF. BianchiJ. BlomsA. BortoneI. BoykoR. A. BriereH. CaiX. CaiA. CalcaterraG. F. CaoN. CaoS. A. CetinJ. F. ChangW. L. ChangG. ChelkovD. Y. ChenG. ChenH. S. ChenM. L. ChenS. J. ChenX. R. ChenY. B. ChenZ. J ChenW. S. ChengG. CibinettoF. CossioX. F. CuiH. L. DaiX. C. DaiA. DbeyssiR. E. De BoerD. DedovichZ. Y. DengA. DenigI. DenysenkoM. DestefanisF. De MoriY. DingC. DongJ. DongL. Y. DongM. Y. DongX. DongS. X. DuY. L. FanJ. FangS. S. FangY. FangR. FarinelliL. FavaF. FeldbauerG. FeliciC. Q. FengJ. H. FengM. FritschC. D. FuY. GaoY. GaoY. GaoY. G. GaoI. GarziaP. T. GeC. GengE. M. GersabeckA GilmanK. GoetzenL. GongW. X. GongW. GradlM. GrecoL. M. GuM. H. GuS. GuY. T. GuC. Y GuanA. Q. GuoL. B. GuoR. P. GuoY. P. GuoA. GuskovT. T. HanW. Y. HanX. Q. HaoF. A. HarrisK. L. HeF. H. HeinsiusC. H. HeinzT. HeldY. K. HengC. HeroldM. HimmelreichT. HoltmannG. Y. HouY. R. HouZ. L. HouH. M. HuJ. F. HuT. HuY. HuG. S. HuangL. Q. HuangX. T. HuangY. P. HuangZ. HuangT. HussainN H��skenW. Ikegami AnderssonW. ImoehlM. IrshadS. JaegerS. JanchivQ. JiQ. P. JiX. B. JiX. L. JiY. Y. JiH. B. JiangX. S. JiangJ. B. JiaoZ. JiaoS. JinY. JinM. Q. JingT. JohanssonN. Kalantar-nayestanakiX. S. KangR. KappertM. KavatsyukB. C. KeI. K. KeshkA. KhoukazP. KieseR. KiuchiR. KliemtL. KochO. B. KolcuB. KopfM. KuemmelM. KuessnerA. KupscM. G. KurthW. K��hnJ. J. LaneJ. S. LangeP. LarinA. LavaniaL. LavezziZ. H. LeiH. LeithoffM. LellmannT. LenzC. LiC. H. LiCheng LiD. M. LiF. LiG. LiH. LiH. LiH. B. LiH. J. LiJ. L. LiJ. Q. LiJ. S. LiKe LiL. K. LiLei LiP. R. LiS. Y. LiW. D. LiW. G. LiX. H. LiX. L. LiXiaoyu LiZ. Y. LiH. LiangH. LiangH. LiangY. F. LiangY. T. LiangG. R. LiaoL. Z. LiaoJ. LibbyC. X. LinB. J. LiuC. X. LiuD. LiuF. H. LiuFang LiuFeng LiuH. B. LiuH. M. LiuHuanhuan LiuHuihui LiuJ. B. LiuJ. L. LiuJ. Y. LiuK. LiuK. Y. LiuL. LiuM. H. LiuP. L. LiuQ. LiuQ. LiuS. B. LiuShuai LiuT. LiuW. M. LiuX. LiuY. LiuY. B. LiuZ. A. LiuZ. Q. LiuX. C. LouF. X. LuF. X. LuH. J. LuJ. D. LuJ. G. LuX. L. LuY. LuY. P. LuC. L. LuoM. X. LuoP. W. LuoT. LuoX. L. LuoS. LussoX. R. LyuF. C. MaH. L. MaL. L. MaM. M. MaQ. M. MaR. Q. MaR. T. MaX. X. MaX. Y. MaF. E. MaasM. MaggioraS. MaldanerS. MaldeA. MangoniY. J. MaoZ. P. MaoS. MarcelloZ. X. MengJ. G. MesschendorpG. MezzadriT. J. MinR. E. MitchellX. H. MoY. J. MoN. Yu. MuchnoiH. MuramatsuS. NakhoulY. NefedovF. NerlingI. B. NikolaevZ. NingS. NisarS. L. OlsenQ. OuyangS. PacettiX. PanY. PanA. PathakP. PatteriM. PelizaeusH. P. PengK. PetersJ. PetterssonJ. L. PingR. G. PingR. PolingV. PrasadH. QiH. R. QiK. H. QiM. QiT. Y. QiT. Y. QiS. QianW. B. QianZ. QianC. F. QiaoL. Q. QinX. P. QinX. S. QinZ. H. QinJ. F. QiuS. Q. QuK. H. RashidK. RavindranC. F. RedmerA. RivettiV. RodinM. RoloG. RongCh. RosnerM. RumpH. S. SangA. SarantsevY. SchelhaasC. SchnierK. SchoenningM. ScodeggioD. C. ShanW. ShanX. Y. ShanJ. F. ShangguanM. ShaoC. P. ShenH. F. ShenP. X. ShenX. Y. ShenH. C. ShiR. S. ShiX. ShiX. D ShiJ. J. SongW. M. SongY. X. SongS. SosioS. SpataroK. X. SuP. P. SuF. F. SuiG. X. SunH. K. SunJ. F. SunL. SunS. S. SunT. SunW. Y. SunW. Y. SunX SunY. J. SunY. K. SunY. Z. SunZ. T. SunY. H. TanY. X. TanC. J. TangG. Y. TangJ. TangJ. X. TengV. ThorenW. H. TianY. T. TianI. UmanB. WangC. W. WangD. Y. WangH. J. WangH. P. WangK. WangL. L. WangM. WangM. Z. WangMeng WangW. WangW. H. WangW. P. WangX. WangX. F. WangX. L. WangY. WangY. WangY. D. WangY. F. WangY. Q. WangY. Y. WangZ. WangZ. Y. WangZiyi WangZongyuan WangD. H. WeiP. WeidenkaffF. WeidnerS. P. WenD. J. WhiteU. WiednerG. WilkinsonM. WolkeL. WollenbergJ. F. WuL. H. WuL. J. WuX. WuZ. WuL. XiaH. XiaoS. Y. XiaoZ. J. XiaoX. H. XieY. G. XieY. H. XieT. Y. XingG. F. XuQ. J. XuW. XuX. P. XuY. C. XuF. YanL. YanW. B. YanW. C. YanXu YanH. J. YangH. X. YangL. YangS. L. YangY. X. YangYifan YangZhi YangM. YeM. H. YeJ. H. YinZ. Y. YouB. X. YuC. X. YuG. YuJ. S. YuT. YuC. Z. YuanL. YuanX. Q. YuanY. YuanZ. Y. YuanC. X. YueA. YuncuA. A. ZafarY. ZengA. Q. ZhangB. X. ZhangGuangyi ZhangH. ZhangH. H. ZhangH. H. ZhangH. Y. ZhangJ. J. ZhangJ. L. ZhangJ. Q. ZhangJ. W. ZhangJ. Y. ZhangJ. Z. ZhangJianyu ZhangJiawei ZhangL. M. ZhangL. Q. ZhangLei ZhangS. ZhangS. F. ZhangShulei ZhangX. D. ZhangX. Y. ZhangY. ZhangY. H. ZhangY. T. ZhangYan ZhangYao ZhangYi ZhangZ. H. ZhangZ. Y. ZhangG. ZhaoJ. ZhaoJ. Y. ZhaoJ. Z. ZhaoLei ZhaoLing ZhaoM. G. ZhaoQ. ZhaoS. J. ZhaoY. B. ZhaoY. X. ZhaoZ. G. ZhaoA. ZhemchugovB. ZhengJ. P. ZhengY. ZhengY. H. ZhengB. ZhongC. ZhongL. P. ZhouQ. ZhouX. ZhouX. K. ZhouX. R. ZhouX. Y. ZhouA. N. ZhuJ. ZhuK. ZhuK. J. ZhuS. H. ZhuT. J. ZhuW. J. ZhuW. J. ZhuY. C. ZhuZ. A. ZhuB. S. ZouJ. H. Zousubject
Particle physicsFOS: Physical sciences53001 natural sciencesHigh Energy Physics - ExperimentNOStandard ModelSubatomär fysikHigh Energy Physics - Experiment (hep-ex)Astronomi astrofysik och kosmologiSubatomic Physics0103 physical sciencesAstronomy Astrophysics and Cosmologyddc:530010306 general physicsAstrophysics::Galaxy AstrophysicsPhysicsAnnihilation010308 nuclear & particles physicsCabibbo–Kobayashi–Maskawa matrixBranching fractionHigh Energy Physics::PhenomenologyDecayHigh Energy Physics::ExperimentEnergy (signal processing)Leptondescription
We report new measurements of the branching fraction $\cal B(D_s^+\to \ell^+\nu)$, where $\ell^+$ is either $\mu^+$ or $\tau^+(\to\pi^+\bar{\nu}_\tau)$, based on $6.32$ fb$^{-1}$ of electron-positron annihilation data collected by the BESIII experiment at six center-of-mass energy points between $4.178$ and $4.226$ GeV. Simultaneously floating the $D_s^+\to\mu^+\nu_\mu$ and $D_s^+\to\tau^+\nu_\tau$ components yields $\cal B(D_s^+\to \tau^+\nu_\tau) = (5.21\pm0.25\pm0.17)\times10^{-2}$, $\cal B(D_s^+\to \mu^+\nu_\mu) = (5.35\pm0.13\pm0.16)\times10^{-3}$, and the ratio of decay widths $R=\frac{\Gamma(D_s^+\to \tau^+\nu_\tau)}{\Gamma(D_s^+\to \mu^+\nu_\mu)} = 9.73^{+0.61}_{-0.58}\pm 0.36$, where the first uncertainties are statistical and the second systematic. No evidence of ${\it CP}$ asymmetry is observed in the decay rates $D_s^\pm\to\mu^\pm\nu_\mu$ and $D_s^\pm\to\tau^\pm\nu_\tau$: $A_{\it CP}(\mu^\pm\nu) = (-1.2\pm2.5\pm1.0)\%$ and $A_{\it CP}(\tau^\pm\nu) = (+2.9\pm4.8\pm1.0)\%$. Constraining our measurement to the Standard Model expectation of lepton universality ($R=9.75$), we find the more precise results $\cal B(D_s^+\to \tau^+\nu_\tau) = (5.22\pm0.10\pm 0.14)\times10^{-2}$ and $A_{\it CP}(\tau^\pm\nu_\tau) = (-0.1\pm1.9\pm1.0)\%$. Combining our results with inputs external to our analysis, we determine the $c\to \bar{s}$ quark mixing matrix element, $D_s^+$ decay constant, and ratio of the decay constants to be $|V_{cs}| = 0.973\pm0.009\pm0.014$, $f_{D^+_s} = 249.9\pm2.4\pm3.5~\text{MeV}$, and $f_{D^+_s}/f_{D^+} = 1.232\pm0.035$, respectively.
year | journal | country | edition | language |
---|---|---|---|---|
2021-09-01 | Physical Review D |