6533b82bfe1ef96bd128cf10

RESEARCH PRODUCT

Automated segmentation of changes in FLAIR-hyperintense white matter lesions in multiple sclerosis on serial magnetic resonance imaging

Jan S. KirschkeCarsten LukasMark MühlauBernhard HemmerPhilipp G. SämannFrank WeberChristian GaserMatthias BussasFrauke ZippThomas FrankeBarbara BellenbergPaul SchmidtDominik S. MeierJens WuerfelViola PongratzPascal KüsterClaus ZimmerSergiu Groppa

subject

AdultMaleMultiple SclerosisCognitive Neuroscience610Fluid-attenuated inversion recoverylcsh:Computer applications to medicine. Medical informaticscomputer.software_genrelcsh:RC346-429050105 experimental psychologyCohort StudiesWhite matterLesionYoung Adult03 medical and health sciences0302 clinical medicineSørensen–Dice coefficientVoxelmedicineHumans0501 psychology and cognitive sciencesRadiology Nuclear Medicine and imagingSegmentationLongitudinal Studieslcsh:Neurology. Diseases of the nervous systemmedicine.diagnostic_testbusiness.industry05 social sciencesRegular ArticleMagnetic resonance imagingLesion segmentation; Magnetic resonance imaging; Multiple sclerosis; White matter lesionsMiddle AgedMagnetic Resonance ImagingHyperintensityddc:Cross-Sectional Studiesmedicine.anatomical_structureNeurologylcsh:R858-859.7FemaleNeurology (clinical)medicine.symptombusinessNuclear medicinecomputer030217 neurology & neurosurgeryFollow-Up Studies

description

Longitudinal analysis of white matter lesion changes on serial MRI has become an important parameter to study diseases with white-matter lesions. Here, we build on earlier work on cross-sectional lesion segmentation; we present a fully automatic pipeline for serial analysis of FLAIR-hyperintense white matter lesions. Our algorithm requires three-dimensional gradient echo T1- and FLAIR- weighted images at 3 Tesla as well as available cross-sectional lesion segmentations of both time points. Preprocessing steps include lesion filling and intrasubject registration. For segmentation of lesion changes, initial lesion maps of different time points are fused; herein changes in intensity are analyzed at the voxel level. Significance of lesion change is estimated by comparison with the difference distribution of FLAIR intensities within normal appearing white matter. The method is validated on MRI data of two time points from 40 subjects with multiple sclerosis derived from two different scanners (20 subjects per scanner). Manual segmentation of lesion increases served as gold standard. Across all lesion increases, voxel-wise Dice coefficient (0.7) as well as lesion-wise detection rate (0.8) and false-discovery rate (0.2) indicate good overall performance. Analysis of scans from a repositioning experiment in a single patient with multiple sclerosis did not yield a single false positive lesion. We also introduce the lesion change plot as a descriptive tool for the lesion change of individual patients with regard to both number and volume. An open source implementation of the algorithm is available at http://www.statistical-modeling.de/lst.html. Keywords: Magnetic resonance imaging, Multiple sclerosis, White matter lesions, Lesion segmentation

https://doi.org/10.1016/j.nicl.2019.101849