6533b82bfe1ef96bd128d60c
RESEARCH PRODUCT
Neuronal Growth and Behavioral Alterations in Mice Deficient for the Psychiatric Disease-Associated Negr1 Gene
Katyayani SinghKatyayani SinghDesirée LorethBruno PöttkerKyra HeftiJürgen InnosJürgen InnosKathrin SchwaldHeidi HengstlerLutz MenzelClemens J. SommerClemens J. SommerKonstantin RadyushkinKonstantin RadyushkinOliver KretzMari-anne PhilipsMari-anne PhilipsCarola A. HaasKatrin FrauenknechtKatrin FrauenknechtKersti LilleväliKersti LilleväliBernd HeimrichEero VasarEero VasarMichael K. E. SchäferMichael K. E. Schäfersubject
cognition0301 basic medicinehippocampusMorris water navigation taskIn situ hybridizationneuronal connectivityHippocampal formationBiologylcsh:RC321-57103 medical and health sciencesCellular and Molecular Neuroscience0302 clinical medicineNeurotransmitter receptoraxon growthMuscarinic acetylcholine receptorlcsh:Neurosciences. Biological psychiatry. NeuropsychiatryMolecular Biologyentorhinal cortexNeuronal growth regulator 1Dentate gyrusEntorhinal cortexCell biology030104 developmental biologynervous systemcell adhesion molecule030217 neurology & neurosurgerydescription
Neuronal growth regulator 1 (NEGR1), a member of the immunoglobulin superfamily cell adhesion molecule subgroup IgLON, has been implicated in neuronal growth and connectivity. In addition, genetic variants in or near the NEGR1 locus have been associated with obesity and more recently with learning difficulties, intellectual disability and psychiatric disorders. However, experimental evidence is lacking to support a possible link between NEGR1, neuronal growth and behavioral abnormalities. Initial expression analysis of NEGR1 mRNA in C57Bl/6 wildtype (WT) mice by in situ hybridization demonstrated marked expression in the entorhinal cortex (EC) and dentate granule cells. In co-cultures of cortical neurons and NSC-34 cells overexpressing NEGR1, neurite growth of cortical neurons was enhanced and distal axons occupied an increased area of cells overexpressing NEGR1. Conversely, in organotypic slice co-cultures, Negr1-knockout (KO) hippocampus was less permissive for axons grown from EC of β-actin-enhanced green fluorescent protein (EGFP) mice compared to WT hippocampus. Neuroanatomical analysis revealed abnormalities of EC axons in the hippocampal dentate gyrus (DG) of Negr1-KO mice including increased numbers of axonal projections to the hilus. Neurotransmitter receptor ligand binding densities, a proxy of functional neurotransmitter receptor abundance, did not show differences in the DG of Negr1-KO mice but altered ligand binding densities to NMDA receptor and muscarinic acetylcholine receptors M1 and M2 were found in CA1 and CA3. Activity behavior, anxiety-like behavior and sensorimotor gating were not different between genotypes. However, Negr1-KO mice exhibited impaired social behavior compared to WT littermates. Moreover, Negr1-KO mice showed reversal learning deficits in the Morris water maze and increased susceptibility to pentylenetetrazol (PTZ)-induced seizures. Thus, our results from neuronal growth assays, neuroanatomical analyses and behavioral assessments provide first evidence that deficiency of the psychiatric disease-associated Negr1 gene may affect neuronal growth and behavior. These findings might be relevant to further evaluate the role of NEGR1 in cognitive and psychiatric disorders.
year | journal | country | edition | language |
---|---|---|---|---|
2018-02-09 | Frontiers in Molecular Neuroscience |