6533b82bfe1ef96bd128e1f8
RESEARCH PRODUCT
Dual-emitting Langmuir-Blodgett film-based organic light-emitting diodes.
Angel López-muñozHenk J. BolinkMd. K. NazeeruddinDiego RepettoEtienne BaranoffNora LardiésMiguel Clemente-leónEugenio Coronadosubject
Chemistrychemistry.chemical_elementSurfaces and InterfacesElectroluminescenceCondensed Matter PhysicsLangmuir–Blodgett filmRutheniumBipyridinechemistry.chemical_compoundCrystallographyMonolayerElectrochemistryOLEDOrganic chemistryGeneral Materials ScienceIridiumLayer (electronics)Spectroscopydescription
Langmuir-Blodgett (LB) films containing alternating layers of the metallosurfactants bis(4,4'-tridecyl-2,2'-bipyridine)-(4,4'-dicarboxy-2,2'-bipyridine) ruthenium(II)-bis(chloride) (1) and bis[2-(2,4-difluorophenyl)pyridine](4,4'-dinonadecyl-2,2'-bipyridine)iridium(III) chloride (2) have been prepared. Langmuir monolayers at the air-water interface of 1 and 2 with different anions in the subphase have been characterized by pi-A compression isotherms and Brewster angle microscopy (BAM). The transferred LB films have been characterized by IR, UV-vis and emission spectroscopy, and atomic force microscopy (AFM). Electroluminescent devices formed by LB films containing alternating layers of these two molecules show dual emission by simple mixing of the two emitters in a single LB film, and by preparing two stacked configurations, in which a LB layer of the ruthenium complexes is deposited on top of a LB layer of the iridium complexes and the inverse situation. The color of the electroluminescence can be tuned by changing the thickness of each LB layer. Due to efficient hole blocking of a layer of the iridium complexes when deposited on top of the layer of ruthenium complexes, in that configuration the green emission of the iridium complexes is suppressed. In the opposite case, excitons are generated in both layers although most likely preferentially in the layer of the iridium complexes.
year | journal | country | edition | language |
---|---|---|---|---|
2010-05-22 | Langmuir : the ACS journal of surfaces and colloids |