6533b82bfe1ef96bd128e38f
RESEARCH PRODUCT
Convergence for varying measures in the topological case
Valeria MarraffaLuisa Di PiazzaKazimierz MusialAnna Rita Sambucinisubject
Mathematics - Functional Analysis28B05Primary 28B20 Secondary 26E25 26A39 28B05 46G10 54C60 54C6526A39setwise convergence vaguely convergence weak convergence of measures locally compact Hausdorff space Vitali's TheoremSettore MAT/05 - Analisi Matematica54C60FOS: MathematicsPrimary 28B20Secondary 26E2554C65Functional Analysis (math.FA)46G10description
In this paper convergence theorems for sequences of scalar, vector and multivalued Pettis integrable functions on a topological measure space are proved for varying measures vaguely convergent.
year | journal | country | edition | language |
---|---|---|---|---|
2023-01-01 |