6533b82bfe1ef96bd128e38f

RESEARCH PRODUCT

Convergence for varying measures in the topological case

Valeria MarraffaLuisa Di PiazzaKazimierz MusialAnna Rita Sambucini

subject

Mathematics - Functional Analysis28B05Primary 28B20 Secondary 26E25 26A39 28B05 46G10 54C60 54C6526A39setwise convergence vaguely convergence weak convergence of measures locally compact Hausdorff space Vitali's TheoremSettore MAT/05 - Analisi Matematica54C60FOS: MathematicsPrimary 28B20Secondary 26E2554C65Functional Analysis (math.FA)46G10

description

In this paper convergence theorems for sequences of scalar, vector and multivalued Pettis integrable functions on a topological measure space are proved for varying measures vaguely convergent.

10.1007/s10231-023-01353-8https://hdl.handle.net/11391/1552573