6533b82cfe1ef96bd128ebb4

RESEARCH PRODUCT

The McShane, PU and Henstock integrals of Banach valued functions

Valeria MarraffaL. Di Piazza

subject

McShanePettis integralPure mathematicsIntegrable systemGeneral MathematicsMathematical analysisMathematics::Classical Analysis and ODEsVariational integralsPU and Henstock integralPettiSettore MAT/05 - Analisi MatematicaOrdinary differential equationConvergence (routing)Vector-valued functionMultiplierMathematics

description

Some relationships between the vector valued Henstock and McShane integrals are investigated. An integral for vector valued functions, defined by means of partitions of the unity (the PU-integral) is studied. In particular it is shown that a vector valued function is McShane integrable if and only if it is both Pettis and PU-integrable. Convergence theorems for the Henstock variational and the PU integrals are stated. The families of multipliers for the Henstock and the Henstock variational integrals of vector valued functions are characterized.

https://doi.org/10.1023/a:1021736031567