6533b82cfe1ef96bd128f5a2
RESEARCH PRODUCT
On the collision property of chaotic iterations based post-treatments over cryptographic pseudorandom number generators
Luigi MarangioChristophe GuyeuxJacques M. Bahisubject
Pseudorandom number generator020203 distributed computingSequenceFinite-state machineDynamical systems theoryComputer science010102 general mathematicsChaotic[INFO.INFO-SE]Computer Science [cs]/Software Engineering [cs.SE]02 engineering and technology[INFO.INFO-MO]Computer Science [cs]/Modeling and Simulation01 natural sciences[INFO.INFO-IU]Computer Science [cs]/Ubiquitous Computing[INFO.INFO-CR]Computer Science [cs]/Cryptography and Security [cs.CR][INFO.INFO-MA]Computer Science [cs]/Multiagent Systems [cs.MA]0202 electrical engineering electronic engineering information engineering[INFO.INFO-ET]Computer Science [cs]/Emerging Technologies [cs.ET][INFO.INFO-DC]Computer Science [cs]/Distributed Parallel and Cluster Computing [cs.DC]0101 mathematicsBoolean functionAlgorithmRandomnessGenerator (mathematics)description
International audience; There is not a proper mathematical definition of chaos, we have instead a quite big amount of definitions, each of one describes chaos in a more or less general context. Taking in account this, it is clear why it is hard to design an algorithm that produce random numbers, a kind of algorithm that could have plenty of concrete appliceautifat (anul)d bions. However we must use a finite state machine (e.g. a laptop) to produce such a sequence of random numbers, thus it is convenient, for obvious reasons, to redefine those aimed sequences as pseudorandom; also problems arise with floating point arithmetic if one wants to recover some real chaotic property (i.e. properties from functions defined on the real numbers). All this considerations are synthesized in the problem of the Pseudorandom number generators (PRNGs). A solution to these obstacles may be to post-operate on existing PRNGs to improve their performances, using the so-called chaotic iterations, i.e., specific iterations of a boolean function and a shift operator that use the inputted generator. This approach leads to a mathematical description of such PRNGs as discrete dynamical systems, on which chaos properties can be investigated using mathematical topology and measure theory. Such properties are well-formulated, and they allow us to characterize which functions improves the sensitivity to the seed, the expansivity, the ergodicity, or the topological mixing of the generator resulting from such a post-processing. Experience shows that choosing relevant boolean functions in these chaotic iterations improves the randomness of the inputted generator, for instance when considering the number of statistical tests of randomness passed successfully. If we focus on the cryptographical application of PRNGs, there are two main classical notions to be considered, namely collision and avalanche effect. In this article, we recall the chaotic properties of the proposed post-treatment and we study the collision property in families of pseudorandom sequences produced by this process.
year | journal | country | edition | language |
---|---|---|---|---|
2018-04-18 | 2018 IEEE Middle East and North Africa Communications Conference (MENACOMM) |