A Hardware and Secure Pseudorandom Generator for Constrained Devices
Hardware security for an Internet of Things or cyber physical system drives the need for ubiquitous cryptography to different sensing infrastructures in these fields. In particular, generating strong cryptographic keys on such resource-constrained device depends on a lightweight and cryptographically secure random number generator. In this research work, we have introduced a new hardware chaos-based pseudorandom number generator, which is mainly based on the deletion of an Hamilton cycle within the $N$ -cube (or on the vectorial negation), plus one single permutation. We have rigorously proven the chaotic behavior and cryptographically secure property of the whole proposal: the mid-term eff…
On the collision property of chaotic iterations based post-treatments over cryptographic pseudorandom number generators
International audience; There is not a proper mathematical definition of chaos, we have instead a quite big amount of definitions, each of one describes chaos in a more or less general context. Taking in account this, it is clear why it is hard to design an algorithm that produce random numbers, a kind of algorithm that could have plenty of concrete appliceautifat (anul)d bions. However we must use a finite state machine (e.g. a laptop) to produce such a sequence of random numbers, thus it is convenient, for obvious reasons, to redefine those aimed sequences as pseudorandom; also problems arise with floating point arithmetic if one wants to recover some real chaotic property (i.e. propertie…