6533b82cfe1ef96bd128f751
RESEARCH PRODUCT
Radiomics and Prostate MRI: Current Role and Future Applications
Gaspare ArnoneLetterio SturialeMauro CalamiaMassimo MidiriGiuseppe SalvaggioFederica VernuccioGiuseppe La TonaCesare GagliardoGiuseppe CutaiaAlessandro StefanoNatale QuartuccioAlbert ComelliFrancesco AgnelloLeonardo Salvaggiosubject
Biochemical recurrencemedicine.medical_specialtyReviewlcsh:Computer applications to medicine. Medical informaticslcsh:QA75.5-76.95030218 nuclear medicine & medical imaging03 medical and health sciencesProstate cancer0302 clinical medicineRadiomicsProstatelocalmedicineRadiology Nuclear Medicine and imaginglcsh:PhotographyGleason scoreElectrical and Electronic EngineeringMultiparametric Magnetic Resonance ImagingFuture perspectivemedicine.diagnostic_testbusiness.industryMagnetic resonance imaginglcsh:TR1-1050prostate cancerartificial intelligencemultiparametric magnetic resonance imagingneoplasm recurrencemedicine.diseaseComputer Graphics and Computer-Aided Designprostate cancer; artificial intelligence; multiparametric magnetic resonance imaging; Gleason score; neoplasm recurrence; localmedicine.anatomical_structure030220 oncology & carcinogenesislcsh:R858-859.7lcsh:Electronic computers. Computer scienceComputer Vision and Pattern RecognitionRadiologyProstate cancer stagingbusinessdescription
Multiparametric prostate magnetic resonance imaging (mpMRI) is widely used as a triage test for men at a risk of prostate cancer. However, the traditional role of mpMRI was confined to prostate cancer staging. Radiomics is the quantitative extraction and analysis of minable data from medical images; it is emerging as a promising tool to detect and categorize prostate lesions. In this paper we review the role of radiomics applied to prostate mpMRI in detection and localization of prostate cancer, prediction of Gleason score and PI-RADS classification, prediction of extracapsular extension and of biochemical recurrence. We also provide a future perspective of artificial intelligence (machine learning and deep learning) applied to the field of prostate cancer.
year | journal | country | edition | language |
---|---|---|---|---|
2021-01-01 |