6533b82cfe1ef96bd128f762
RESEARCH PRODUCT
A Remark on an Overdetermined Problem in Riemannian Geometry
Luigi VezzoniGiulio Ciraolosubject
PhysicsIsoparametric functionComparison principleGeodesic010102 general mathematicsRotationally symmetric spacesRiemannian manifoldRiemannian geometry01 natural sciencesRotationally symmetric spaceCombinatoricsOverdetermined systemsymbols.namesakeBounded function0103 physical sciencessymbolsComparison principle; Isoparametric functions; Overdetermined PDE; Riemannian Geometry; Rotationally symmetric spaces; Mathematics (all)Isoparametric functionsMathematics (all)Overdetermined PDEMathematics::Differential Geometry010307 mathematical physics0101 mathematicsRiemannian Geometrydescription
Let (M, g) be a Riemannian manifold with a distinguished point O and assume that the geodesic distance d from O is an isoparametric function. Let \(\varOmega \subset M\) be a bounded domain, with \(O \in \varOmega \), and consider the problem \(\varDelta _p u = -1\ \mathrm{in}\ \varOmega \) with \(u=0\ \mathrm{on}\ \partial \varOmega \), where \(\varDelta _p\) is the p-Laplacian of g. We prove that if the normal derivative \(\partial _{\nu }u\) of u along the boundary of \(\varOmega \) is a function of d satisfying suitable conditions, then \(\varOmega \) must be a geodesic ball. In particular, our result applies to open balls of \(\mathbb {R}^n\) equipped with a rotationally symmetric metric of the form \(g=dt^2+\rho ^2(t)\,g_S\), where \(g_S\) is the standard metric of the sphere.
year | journal | country | edition | language |
---|---|---|---|---|
2016-01-01 |