0000000000349709

AUTHOR

Luigi Vezzoni

On Serrin’s overdetermined problem in space forms

We consider Serrin’s overdetermined problem for the equation $$\Delta v + nK v = -\,1$$ in space forms, where K is the curvature of the space, and we prove a symmetry result by using a P-function approach. Our approach generalizes the one introduced by Weinberger to space forms and, as in the Euclidean case, it provides a short proof of the symmetry result which does not make use of the method of moving planes.

research product

A Remark on an Overdetermined Problem in Riemannian Geometry

Let (M, g) be a Riemannian manifold with a distinguished point O and assume that the geodesic distance d from O is an isoparametric function. Let \(\varOmega \subset M\) be a bounded domain, with \(O \in \varOmega \), and consider the problem \(\varDelta _p u = -1\ \mathrm{in}\ \varOmega \) with \(u=0\ \mathrm{on}\ \partial \varOmega \), where \(\varDelta _p\) is the p-Laplacian of g. We prove that if the normal derivative \(\partial _{\nu }u\) of u along the boundary of \(\varOmega \) is a function of d satisfying suitable conditions, then \(\varOmega \) must be a geodesic ball. In particular, our result applies to open balls of \(\mathbb {R}^n\) equipped with a rotationally symmetric metr…

research product

A rigidity problem on the round sphere

We consider a class of overdetermined problems in rotationally symmetric spaces, which reduce to the classical Serrin's overdetermined problem in the case of the Euclidean space. We prove some general integral identities for rotationally symmetric spaces which imply a rigidity result in the case of the round sphere.

research product

A sharp quantitative version of Alexandrov's theorem via the method of moving planes

We prove the following quantitative version of the celebrated Soap Bubble Theorem of Alexandrov. Let $S$ be a $C^2$ closed embedded hypersurface of $\mathbb{R}^{n+1}$, $n\geq1$, and denote by $osc(H)$ the oscillation of its mean curvature. We prove that there exists a positive $\varepsilon$, depending on $n$ and upper bounds on the area and the $C^2$-regularity of $S$, such that if $osc(H) \leq \varepsilon$ then there exist two concentric balls $B_{r_i}$ and $B_{r_e}$ such that $S \subset \overline{B}_{r_e} \setminus B_{r_i}$ and $r_e -r_i \leq C \, osc(H)$, with $C$ depending only on $n$ and upper bounds on the surface area of $S$ and the $C^2$ regularity of $S$. Our approach is based on a…

research product