6533b82cfe1ef96bd128fee0
RESEARCH PRODUCT
Urban Growth and Real Estate Income. A Comparison of Analytical Models
Luca SalvatiAntonio NesticòMassimiliano BencardinoMaria Fiorella Granatasubject
crescita urbanaPolycentrismUrban growth; Real estate value; GIS; Territorial planning; ItalyReal estateUrban growth02 engineering and technology0502 economics and businessGIS; Italy; Real estate value; Territorial planning; Urban growth0202 electrical engineering electronic engineering information engineeringTerritorial planningEconomic geographyvalore immobiliareEconomies of agglomerationSettlement (structural)05 social sciencesGISMetropolitan areaItaliaPianificazione territorialeReal estate valueGeographyItalyHomogeneousSettore ICAR/22 - Estimo020201 artificial intelligence & image processing050203 business & managementdescription
I processi di crescita urbana sono notoriamente complessi dipendendo da un’ampia varietà di fattori demografici, socio-culturali ed economici. L’analisi è ancora più complessa nelle aree metropolitane che sono il risultato di antichi processi di agglomerazione in una fase d’intenso accrescimento dell’insediamento e, più recentemente, della formazione di policentrismo urbano. L’investigazione richiede l’acquisizione, l’analisi e l’elaborazione d’idonee informazioni a livello delle unità territoriali omogenee, basandosi su modelli consolidati o su nuovi protocolli da verificare. Il presente contributo analizza la crescita urbana secondo un approccio di piccola scala, individuando i distretti locali omogenei per caratteristiche di localizzazione che possono influire sul valore di mercato degli immobili a uso residenziale. Tali caratteristiche includono la posizione delle unità residenziali rispetto al centro urbano, il livello delle infrastrutture, la presenza attrezzature sociali e di esercizi commerciali, ma anche la qualità dell'ambiente esterno in termini di disponibilità di verde pubblico e di livello di inquinamento. Applicazioni del Sistema Informativo Geografico sono utilizzate per elaborare un insieme di dati disponibile per individuare dapprima l’evoluzione demografica di Napoli intesa come una regione urbana funzionale in conformità al modello del ciclo di vita proposto da Van den Berg e, successivamente, le dinamiche immobiliari metropolitane alla luce dei flussi di reddito che ogni attività è in grado di generare. La conoscenza dell'evoluzione spazio-temporale dei valori immobiliari può essere utile per chiarire il meccanismo fondamentale della crescita urbana a scala metropolitana. Urban growth processes are notoriously complex, depending on vastly different demographic, socio-cultural and economic factors. The analysis is even more complex in the metropolitan areas, since they are the result of ancient agglomeration processes in a phase of intensive development of settlement and, more recently, of the formation of urban polycentrism. Investigation requires collection, analysis and processing of useful information at homogeneous territorial units, based on already consolidated models or through new validating protocols. The present paper analyzes urban growth based on a micro-scale approach, identifying homogeneous local districts for localization features that can affect real estate market value for residential use. These features include the location of the housing unit compared with the city center, the level of infrastructure, the presence of community facilities and shops, but also the external environment quality in terms of availability of green public and air pollution degree. Geographic Information System applications are used to process the available dataset to identify, at first, the demographic evolution of Naples as a functional urban region according to the life cycle model proposed by Van den Berg and, then, the real estate dynamics of the metropolitan in the light of income flows which each asset is capable of producing. Understanding the spatio-temporal evolution of real estate property values can be useful to explain the intimate mechanism of urban growth at the metropolitan scale.
year | journal | country | edition | language |
---|---|---|---|---|
2016-01-01 |