6533b82cfe1ef96bd12901d4
RESEARCH PRODUCT
Measurement of the absolute branching fraction of inclusive semielectronic $D_s^+$ decays
M. AblikimM. N. AchasovP. AdlarsonS. AhmedM. AlbrechtR. AlibertiA. AmorosoM. R. AnQ. AnX. H. BaiY. BaiO. BakinaR. Baldini FerroliI. BalossinoY. BanK. BegzsurenN. BergerM. BertaniD. BettoniF. BianchiJ. BlomsA. BortoneI. BoykoR. A. BriereH. CaiX. CaiA. CalcaterraG. F. CaoN. CaoS. A. CetinJ. F. ChangW. L. ChangG. ChelkovD. Y. ChenG. ChenH. S. ChenM. L. ChenS. J. ChenX. R. ChenY. B. ChenZ. J. ChenW. S. ChengG. CibinettoF. CossioX. F. CuiH. L. DaiX. C. DaiA. DbeyssiR. E. De BoerD. DedovichZ. Y. DengA. DenigI. DenysenkoM. DestefanisF. De MoriY. DingC. DongJ. DongL. Y. DongM. Y. DongX. DongS. X. DuY. L. FanJ. FangS. S. FangY. FangR. FarinelliL. FavaF. FeldbauerG. FeliciC. Q. FengJ. H. FengM. FritschC. D. FuY. GaoY. GaoY. GaoY. G. GaoI. GarziaP. T. GeC. GengE. M. GersabeckA. GilmanK. GoetzenL. GongW. X. GongW. GradlM. GrecoL. M. GuM. H. GuY. T. GuC. Y. GuanA. Q. GuoL. B. GuoR. P. GuoY. P. GuoA. GuskovT. T. HanW. Y. HanX. Q. HaoF. A. HarrisK. L. HeF. H. HeinsiusC. H. HeinzT. HeldY. K. HengC. HeroldM. HimmelreichT. HoltmannG. Y. HouY. R. HouZ. L. HouH. M. HuJ. F. HuT. HuY. HuG. S. HuangL. Q. HuangX. T. HuangY. P. HuangZ. HuangT. HussainN. H��skenW. Ikegami AnderssonW. ImoehlM. IrshadS. JaegerS. JanchivQ. JiQ. P. JiX. B. JiX. L. JiY. Y. JiH. B. JiangX. S. JiangJ. B. JiaoZ. JiaoS. JinY. JinM. Q. JingT. JohanssonN. Kalantar-nayestanakiX. S. KangR. KappertM. KavatsyukB. C. KeI. K. KeshkA. KhoukazP. KieseR. KiuchiR. KliemtL. KochO. B. KolcuB. KopfM. KuemmelM. KuessnerA. KupscM. G. KurthW. K��hnJ. J. LaneJ. S. LangeP. LarinA. LavaniaL. LavezziZ. H. LeiH. LeithoffM. LellmannT. LenzC. LiC. H. LiCheng LiD. M. LiF. LiG. LiH. LiH. LiH. B. LiH. J. LiJ. L. LiJ. Q. LiJ. S. LiKe LiL. K. LiLei LiP. R. LiS. Y. LiW. D. LiW. G. LiX. H. LiX. L. LiXiaoyu LiZ. Y. LiH. LiangH. LiangH. LiangY. F. LiangY. T. LiangG. R. LiaoL. Z. LiaoJ. LibbyC. X. LinB. J. LiuC. X. LiuD. LiuF. H. LiuFang LiuFeng LiuH. B. LiuH. M. LiuHuanhuan LiuHuihui LiuJ. B. LiuJ. L. LiuJ. Y. LiuK. LiuK. Y. LiuL. LiuM. H. LiuP. L. LiuQ. LiuQ. LiuS. B. LiuShuai LiuT. LiuW. M. LiuX. LiuY. LiuY. B. LiuZ. A. LiuZ. Q. LiuX. C. LouF. X. LuH. J. LuJ. D. LuJ. G. LuX. L. LuY. LuY. P. LuC. L. LuoM. X. LuoP. W. LuoT. LuoX. L. LuoX. R. LyuF. C. MaH. L. MaL. L. MaM. M. MaQ. M. MaR. Q. MaR. T. MaX. X. MaX. Y. MaF. E. MaasM. MaggioraS. MaldanerS. MaldeQ. A. MalikA. MangoniY. J. MaoZ. P. MaoS. MarcelloZ. X. MengJ. G. MesschendorpG. MezzadriT. J. MinR. E. MitchellX. H. MoY. J. MoN. Yu. MuchnoiH. MuramatsuS. NakhoulY. NefedovF. NerlingI. B. NikolaevZ. NingS. NisarQ. OuyangS. PacettiX. PanY. PanA. PathakA. PathakP. PatteriM. PelizaeusH. P. PengK. PetersJ. PetterssonJ. L. PingR. G. PingS. PogodinR. PolingV. PrasadH. QiH. R. QiK. H. QiM. QiT. Y. QiS. QianW. B. QianZ. QianC. F. QiaoL. Q. QinX. P. QinX. S. QinZ. H. QinJ. F. QiuS. Q. QuK. H. RashidK. RavindranC. F. RedmerA. RivettiV. RodinM. RoloG. RongCh. RosnerM. RumpH. S. SangA. SarantsevY. SchelhaasC. SchnierK. SchoenningM. ScodeggioD. C. ShanW. ShanX. Y. ShanJ. F. ShangguanM. ShaoC. P. ShenH. F. ShenP. X. ShenX. Y. ShenH. C. ShiR. S. ShiX. ShiX. D. ShiJ. J. SongW. M. SongY. X. SongS. SosioS. SpataroK. X. SuP. P. SuF. F. SuiG. X. SunH. K. SunJ. F. SunL. SunS. S. SunT. SunW. Y. SunW. Y. SunX. SunY. J. SunY. K. SunY. Z. SunZ. T. SunY. H. TanY. X. TanC. J. TangG. Y. TangJ. TangJ. X. TengV. ThorenW. H. TianY. T. TianI. UmanB. WangC. W. WangD. Y. WangH. J. WangH. P. WangK. WangL. L. WangM. WangM. Z. WangMeng WangW. WangW. H. WangW. P. WangX. WangX. F. WangX. L. WangY. WangY. WangY. D. WangY. F. WangY. Q. WangY. Y. WangZ. WangZ. Y. WangZiyi WangZongyuan WangD. H. WeiF. WeidnerS. P. WenD. J. WhiteU. WiednerG. WilkinsonM. WolkeL. WollenbergJ. F. WuL. H. WuL. J. WuX. WuZ. WuL. XiaH. XiaoS. Y. XiaoZ. J. XiaoX. H. XieY. G. XieY. H. XieT. Y. XingG. F. XuQ. J. XuW. XuX. P. XuY. C. XuF. YanL. YanW. B. YanW. C. YanXu YanH. J. YangH. X. YangL. YangS. L. YangY. X. YangYifan YangZhi YangM. YeM. H. YeJ. H. YinZ. Y. YouB. X. YuC. X. YuG. YuJ. S. YuT. YuC. Z. YuanL. YuanX. Q. YuanY. YuanZ. Y. YuanC. X. YueA. A. ZafarX. Zeng ZengY. ZengA. Q. ZhangB. X. ZhangGuangyi ZhangH. ZhangH. H. ZhangH. H. ZhangH. Y. ZhangJ. J. ZhangJ. L. ZhangJ. Q. ZhangJ. W. ZhangJ. Y. ZhangJ. Z. ZhangJianyu ZhangJiawei ZhangL. M. ZhangL. Q. ZhangLei ZhangS. ZhangS. F. ZhangShulei ZhangX. D. ZhangX. Y. ZhangY. ZhangY. T. ZhangY. H. ZhangYan ZhangYao ZhangZ. H. ZhangZ. Y. ZhangG. ZhaoJ. ZhaoJ. Y. ZhaoJ. Z. ZhaoLei ZhaoLing ZhaoM. G. ZhaoQ. ZhaoS. J. ZhaoY. B. ZhaoY. X. ZhaoZ. G. ZhaoA. ZhemchugovB. ZhengJ. P. ZhengY. ZhengY. H. ZhengB. ZhongC. ZhongL. P. ZhouQ. ZhouX. ZhouX. K. ZhouX. R. ZhouX. Y. ZhouA. N. ZhuJ. ZhuK. ZhuK. J. ZhuS. H. ZhuT. J. ZhuW. J. ZhuW. J. ZhuY. C. ZhuZ. A. ZhuB. S. ZouJ. H. ZouBesiii Collaborationsubject
Particle physicsMesonFOS: Physical sciences01 natural sciencesMeasure (mathematics)530law.inventionNOHigh Energy Physics - ExperimentMomentumSubatomär fysikHigh Energy Physics - Experiment (hep-ex)Positronlaw0103 physical sciencesSubatomic Physicsddc:530010306 general physicsColliderPhysicsAnnihilation010308 nuclear & particles physicsBranching fractionHigh Energy Physics::PhenomenologyHigh Energy Physics::ExperimentEnergy (signal processing)description
We measure the inclusive semielectronic decay branching fraction of the $D_s^+$ meson. A double-tag technique is applied to $e^+e^-$ annihilation data collected by the BESIII experiment at the BEPCII collider, operating in the center-of-mass energy range $4.178 - 4.230$ GeV. We select positrons from $D_s^+\rightarrow Xe^{+}\nu_e$ with momenta greater than 200 MeV/$c$, and determine the laboratory momentum spectrum, accounting for the effects of detector efficiency and resolution. The total positron yield and semielectronic branching fraction are determined by extrapolating this spectrum below the momentum cutoff. We measure the $D_s^+$ semielectronic branching fraction to be $\mathcal{B}\left(D_s^+\rightarrow Xe^{+}\nu_e\right)=\left(6.30\pm0.13\;(\text{stat.})\pm 0.10\;(\text{syst.})\right)\%$, showing no evidence for unobserved exclusive semielectronic modes. We combine this result with external data taken from literature to determine the ratio of the $D_s^+$ and $D^0$ semielectronic widths, $\frac{\Gamma(D_{s}^{+}\rightarrow Xe^+\nu_e)}{\Gamma(D^0\rightarrow Xe^+\nu_e)}=0.790\pm 0.016\;(\text{stat.})\pm0.020\;(\text{syst.})$. Our results are consistent with and more precise than previous measurements.
year | journal | country | edition | language |
---|---|---|---|---|
2021-07-01 |