6533b82dfe1ef96bd1291540

RESEARCH PRODUCT

Mechanistic analysis and experimental verification of bicarbonate-controlled enteric coat dissolution: Potential in vivo implications

Peter LangguthNiloufar SalehiMarival BermejoN.m. JobGordon L. AmidonElke LipkaHao RuanJozef Al-gousousJohannes Andreas BlecharRaimar LoebenbergK.x. SunGregory E. Amidon

subject

Molar concentrationChemistry PharmaceuticalBicarbonateInorganic chemistryKineticsPharmaceutical ScienceCapsules02 engineering and technologyBuffers030226 pharmacology & pharmacyExcipientsDiffusion layer03 medical and health scienceschemistry.chemical_compoundHypromellose Derivatives0302 clinical medicineIntestine SmallmedicineHumansIntestinal MucosaMesalamineDissolutionAcetaminophenCarbonic acidGeneral MedicineHydrogen-Ion Concentration021001 nanoscience & nanotechnologyEnteric coatingBicarbonatesDrug LiberationModels ChemicalSolubilitychemistryCarbon dioxide0210 nano-technologyBiotechnologymedicine.drug

description

Enteric coatings have shown in vivo dissolution rates that are poorly predicted by traditional in vitro tests, with the in vivo dissolution being considerably slower than in vitro. To provide a more mechanistic understanding of this, the dependence of the release properties of various enteric-coated (EC) products on bulk pH and bicarbonate molarity was investigated. It was found that, at presumably in vivo-relevant values, the bicarbonate molarity is a more significant determinant of the dissolution profile than the bulk pH. The findings also indicate that this steep relationship between the dissolution of enteric coatings and bicarbonate molarity limits those coatings' performance in vivo. This is attributed to the relatively low bicarbonate molarities in human intestinal fluids. Further, the hydration and dehydrations kinetics of carbonic acid and carbon dioxide are not sufficiently rapid to reach equilibrium in the diffusion layer surrounding a dissolving ionizable solid. This results in the effective pKa of bicarbonate in the diffusion layer being lower than that determined potentiometrically at equilibrium in the bulk surrounding fluid. These results demonstrate the importance of thoroughly investigating the intestinal bicarbonate concentrations and using bicarbonate buffers or properly designed surrogates (if possible) when evaluating enteric drug products during product development and quality control.

https://doi.org/10.1016/j.ejpb.2019.03.012