0000000000116178

AUTHOR

Gregory E. Amidon

showing 7 related works from this author

Exploring Bioequivalence of Dexketoprofen Trometamol Drug Products with the Gastrointestinal Simulator (GIS) and Precipitation Pathways Analyses

2019

The present work aimed to explain the differences in oral performance in fasted humans who were categorized into groups based on the three different drug product formulations of dexketoprofen trometamol (DKT) salt&mdash

liquid–liquid phase separationSALT DISPROPORTIONATIONgastrointestinal absorptionSodiumlcsh:RS1-441Pharmaceutical ScienceExcipientchemistry.chemical_elementSalt (chemistry)Hydrochloric acidSOLUBILITYCalciumBioequivalenceArticlelcsh:Pharmacy and materia medicachemistry.chemical_compoundFLUIDSEMAoral absorptionABSORPTIONmedicinePharmacology & PharmacySUPERSATURATED SOLUTIONSdexketoprofenSimulationchemistry.chemical_classificationScience & TechnologyChemistryliquid-liquid phase separationPhosphateDexketoprofenSIMILARITIESgastrointestinal simulatorin vitro dissolutionIN-VITRO DISSOLUTIONLife Sciences & BiomedicineVIVO DISSOLUTIONMETHODOLOGYmicroscopy imagingmedicine.drugPharmaceutics
researchProduct

Formulation predictive dissolution (fPD) testing to advance oral drug product development: an introduction to the US FDA funded ‘21st Century BA/BE’ …

2018

Over the past decade, formulation predictive dissolution (fPD) testing has gained increasing attention. Another mindset is pushed forward where scientists in our field are more confident to explore the in vivo behavior of an oral drug product by performing predictive in vitro dissolution studies. Similarly, there is an increasing interest in the application of modern computational fluid dynamics (CFD) frameworks and high-performance computing platforms to study the local processes underlying absorption within the gastrointestinal (GI) tract. In that way, CFD and computing platforms both can inform future PBPK-based in silico frameworks and determine the GI-motility-driven hydrodynamic impac…

Physiologically based pharmacokinetic modellingBioavailabilityComputer scienceManometryDrug CompoundingAdministration OralPharmaceutical Science02 engineering and technologyBioequivalenceComputational fluid dynamics030226 pharmacology & pharmacyArticleDOSAGE FORMSINDUCED VARIABILITY03 medical and health sciences0302 clinical medicineBIOPHARMACEUTICS CLASSIFICATION-SYSTEMABSORPTIONHumansDissolution testingOral absorptionPharmacology & PharmacyDissolutionIN-VIVO DISSOLUTIONIn vivo dissolutionBioequivalenceScience & TechnologyWORKSHOP REPORTUnited States Food and Drug Administrationbusiness.industryGASTROINTESTINAL SIMULATOR GISVITRO DISSOLUTION021001 nanoscience & nanotechnologyBiopharmaceutics Classification SystemUnited StatesMODELDrug LiberationNew product developmentPredictive powerDIFFUSION-CONTROLLED DISSOLUTIONBiochemical engineering0210 nano-technologybusinessLife Sciences & BiomedicineOral retinoidMRI
researchProduct

Mechanistic analysis and experimental verification of bicarbonate-controlled enteric coat dissolution: Potential in vivo implications

2019

Enteric coatings have shown in vivo dissolution rates that are poorly predicted by traditional in vitro tests, with the in vivo dissolution being considerably slower than in vitro. To provide a more mechanistic understanding of this, the dependence of the release properties of various enteric-coated (EC) products on bulk pH and bicarbonate molarity was investigated. It was found that, at presumably in vivo-relevant values, the bicarbonate molarity is a more significant determinant of the dissolution profile than the bulk pH. The findings also indicate that this steep relationship between the dissolution of enteric coatings and bicarbonate molarity limits those coatings' performance in vivo.…

Molar concentrationChemistry PharmaceuticalBicarbonateInorganic chemistryKineticsPharmaceutical ScienceCapsules02 engineering and technologyBuffers030226 pharmacology & pharmacyExcipientsDiffusion layer03 medical and health scienceschemistry.chemical_compoundHypromellose Derivatives0302 clinical medicineIntestine SmallmedicineHumansIntestinal MucosaMesalamineDissolutionAcetaminophenCarbonic acidGeneral MedicineHydrogen-Ion Concentration021001 nanoscience & nanotechnologyEnteric coatingBicarbonatesDrug LiberationModels ChemicalSolubilitychemistryCarbon dioxide0210 nano-technologyBiotechnologymedicine.drugEuropean Journal of Pharmaceutics and Biopharmaceutics
researchProduct

Hierarchical Mass Transfer Analysis of Drug Particle Dissolution, Highlighting the Hydrodynamics, pH, Particle Size, and Buffer Effects for the Disso…

2020

Dissolution is a crucial process for the oral delivery of drug products. Before being absorbed through epithelial cell membranes to reach the systemic circulation, drugs must first dissolve in the human gastrointestinal (GI) tract. In vivo and in vitro dissolutions are complex because of their dependency upon the drug physicochemical properties, drug product, and GI physiological properties. However, an understanding of this process is critical for the development of robust drug products. To enhance our understanding of in vivo and in vitro dissolutions, a hierarchical mass transfer (HMT) model was developed that considers the drug properties, GI fluid properties, and fluid hydrodynamics. T…

Chemistry PharmaceuticalDiffusionPharmaceutical Science02 engineering and technologyBuffers030226 pharmacology & pharmacyDiffusion03 medical and health sciences0302 clinical medicineMass transferDrug DiscoveryDissolution testingParticle SizeSolubilityDissolutionChemistryCheminformaticsHydrogen-Ion Concentration021001 nanoscience & nanotechnologyShear rateDrug LiberationKineticsModels ChemicalSolubilityChemical engineeringHydrodynamicsMolecular MedicineParticleParticle size0210 nano-technologyMolecular Pharmaceutics
researchProduct

Improving Dissolution Behavior and Oral Absorption of Drugs with pH-Dependent Solubility Using pH Modifiers: A Physiologically Realistic Mass Transpo…

2021

Orally dosed drugs must dissolve in the gastrointestinal (GI) tract before being absorbed through the epithelial cell membrane. In vivo drug dissolution depends on the GI tract's physiological conditions such as pH, residence time, luminal buffers, intestinal motility, and transit and drug properties under fed and fasting conditions (Paixao, P. et al. Mol. Pharm. 2018 and Bermejo, et al. M. Mol. Pharm. 2018). The dissolution of an ionizable drug may benefit from manipulating in vivo variables such as the environmental pH using pH-modifying agents incorporated into the dosage form. A successful example is the use of such agents for dissolution enhancement of BCS class IIb (high-permeability,…

Absorption (pharmacology)Chemistry PharmaceuticalAdministration OralBiological AvailabilityPharmaceutical ScienceModels BiologicalDosage formAcid dissociation constantExcipientsFumaratesDrug DiscoveryHumansComputer SimulationDissolution testingSolubilityTartratesDissolutionChromatographyChemistryHydrogen-Ion ConcentrationStomach emptyingBetaineDrug LiberationSolubilityGastrointestinal AbsorptionDrug DesignMolecular MedicineWeak baseMolecular Pharmaceutics
researchProduct

Mass Transport Analysis of the Enhanced Buffer Capacity of the Bicarbonate-CO2 Buffer in a Phase-Heterogenous System: Physiological and Pharmaceutica…

2018

The bicarbonate buffer capacity is usually considered in a phase-homogeneous system, at equilibrium, with no CO2 transfer between the liquid buffer phase and another phase. However, typically, an in vitro bicarbonate buffer-based system is a phase-heterogeneous system, as it entails continuously sparging (bubbling) the dissolution medium with CO2 in a gas mixture, at constant ratio, to maintain a constant partial pressure of CO2 (g) and CO2(aq) molarity at a prescribed value, with CO2 diffusing freely between the gas and the aqueous phases. The human gastrointestinal tract is also a phase-heterogeneous system, with CO2 diffusing across the mucosal membrane into the mesenteric arterial blood…

Mass transportacid and base dissolutionPHBicarbonatePharmaceutical Sciencebicarbonate02 engineering and technologyResearch & Experimental Medicinebuffer capacity030226 pharmacology & pharmacyBuffer (optical fiber)03 medical and health scienceschemistry.chemical_compound0302 clinical medicineDrug DiscoveryPharmacology & PharmacyPERMEABILITYVOLUMESRELEASEScience & TechnologyChemistryin vivo gastrointestinal bufferingDYNAMIC DISSOLUTIONPROFILES021001 nanoscience & nanotechnologyPRODUCTSphase-heterogeneousChemical engineeringMedicine Research & ExperimentalMolecular MedicineSECRETIONCO20210 nano-technologyLife Sciences & BiomedicineBEHAVIORTRACT
researchProduct

Mass Transport Analysis of Bicarbonate Buffer: Effect of the CO2–H2CO3 Hydration–Dehydration Kinetics in the Fluid Boundary Layer and the Apparent Ef…

2019

The main buffering system influencing ionizable drug dissolution in the human intestinal fluid is bicarbonate-based; however, it is rarely used in routine pharmaceutical practice due to the volatility of dissolved CO2. The typical pharmaceutical buffers used fail to capture the unique aspects of the hydration-dehydration kinetics of the bicarbonate-CO2 system. In particular, CO2 is involved in a reversible interconversion with carbonic acid (H2CO3), which is the actual conjugate acid of the system, as follows CO2 + H2O ⇌ H2CO3. In contrast to ionization reactions, this interconversion does not equilibrate very rapidly compared to the diffusional processes through a typical fluid diffusion b…

Carbonic acidChemistryved/biologyBicarbonateved/biology.organism_classification_rank.speciesPharmaceutical ScienceThermodynamics02 engineering and technology021001 nanoscience & nanotechnology030226 pharmacology & pharmacyDiffusion layerReaction rate03 medical and health scienceschemistry.chemical_compound0302 clinical medicineDehydration reactionDrug DiscoveryMolecular MedicineDissolution testing0210 nano-technologyDissolutionConjugate acidMolecular Pharmaceutics
researchProduct