6533b82efe1ef96bd1292746

RESEARCH PRODUCT

Frustrated quantum spin models with cold coulomb crystals

Martin B. PlenioFerdinand Schmidt-kalerAlex RetzkerAlejandro BermudezJ. Almeida

subject

FOS: Physical sciencesGeneral Physics and AstronomyQuantum simulatorQuantum phases01 natural sciences010305 fluids & plasmasParamagnetismCondensed Matter - Strongly Correlated ElectronsQuantum mechanics0103 physical sciencesAtom010306 general physicsPhase diagramPhysicsQuantum PhysicsStrongly Correlated Electrons (cond-mat.str-el)Condensed matter physicsANNNI modelCondensed Matter - Other Condensed MatterFerromagnetismZigzagQuantum Gases (cond-mat.quant-gas)Condensed Matter::Strongly Correlated ElectronsQuantum Physics (quant-ph)Condensed Matter - Quantum GasesOther Condensed Matter (cond-mat.other)

description

We exploit the geometry of a zig-zag cold-ion crystal in a linear trap to propose the quantum simulation of a paradigmatic model of long-ranged magnetic frustration. Such a quantum simulation would clarify the complex features of a rich phase diagram that presents ferromagnetic, dimerized antiferromagnetic, paramagnetic, and floating phases, together with previously unnoticed features that are hard to assess by numerics. We analyze in detail its experimental feasibility, and provide supporting numerical evidence on the basis of realistic parameters in current ion-trap technology.

10.1103/physrevlett.107.207209http://dx.doi.org/10.1103/PhysRevLett.107.207209