6533b82ffe1ef96bd1295d63

RESEARCH PRODUCT

The exterior derivative as a Killing vector field

Juan MonterdeO. A. Sánchez-valenzuela

subject

Curl (mathematics)Mathematics::Commutative AlgebraVector operatorDifferential formGeneral MathematicsMathematics::Rings and AlgebrasMathematical analysisFrölicher–Nijenhuis bracketClosed and exact differential formsKilling vector fieldGeneralizations of the derivativeExterior derivativeMathematics::Differential GeometryMathematics

description

Among all the homogeneous Riemannian graded metrics on the algebra of differential forms, those for which the exterior derivative is a Killing graded vector field are characterized. It is shown that all of them are odd, and are naturally associated to an underlying smooth Riemannian metric. It is also shown that all of them are Ricci-flat in the graded sense, and have a graded Laplacian operator that annihilates the whole algebra of differential forms.

https://doi.org/10.1007/bf02761099