0000000000751622
AUTHOR
O. A. Sánchez-valenzuela
The exterior derivative as a Killing vector field
Among all the homogeneous Riemannian graded metrics on the algebra of differential forms, those for which the exterior derivative is a Killing graded vector field are characterized. It is shown that all of them are odd, and are naturally associated to an underlying smooth Riemannian metric. It is also shown that all of them are Ricci-flat in the graded sense, and have a graded Laplacian operator that annihilates the whole algebra of differential forms.
Existence and uniqueness of solutions to superdifferential equations
Abstract We state and prove the theorem of existence and uniqueness of solutions to ordinary superdifferential equations on supermanifolds. It is shown that any supervector field, X = X0 + X1, has a unique integral flow, Г: R 1¦1 x (M, AM) → (M, AM), satisfying a given initial condition. A necessary and sufficient condition for this integral flow to yield an R 1¦1-action is obtained: the homogeneous components, X0, and, X1, of the given field must define a Lie superalgebra of dimension (1, 1). The supergroup structure on R 1¦1, however, has to be specified: there are three non-isomorphic Lie supergroup structures on R 1¦1, all of which have addition as the group operation in the underlying …
Graded metrics adapted to splittings
Homogeneous graded metrics over split ℤ2-graded manifolds whose Levi-Civita connection is adapted to a given splitting, in the sense recently introduced by Koszul, are completely described. A subclass of such is singled out by the vanishing of certain components of the graded curvature tensor, a condition that plays a role similar to the closedness of a graded symplectic form in graded symplectic geometry: It amounts to determining a graded metric by the data {g, ω, Δ′}, whereg is a metric tensor onM, ω 0 is a fibered nondegenerate skewsymmetric bilinear form on the Batchelor bundleE → M, and Δ′ is a connection onE satisfying Δ′ω = 0. Odd metrics are also studied under the same criterion an…