6533b859fe1ef96bd12b83d1

RESEARCH PRODUCT

Graded metrics adapted to splittings

O. A. Sánchez-valenzuelaJuan Monterde

subject

Riemann curvature tensorPure mathematicsCurvature of Riemannian manifoldsMathematics::Commutative AlgebraGeneral MathematicsMathematics::Rings and AlgebrasMathematical analysisConstant curvaturesymbols.namesakeRicci-flat manifoldsymbolsRicci decompositionCurvature formMathematics::Differential GeometryRicci curvatureMathematicsScalar curvature

description

Homogeneous graded metrics over split ℤ2-graded manifolds whose Levi-Civita connection is adapted to a given splitting, in the sense recently introduced by Koszul, are completely described. A subclass of such is singled out by the vanishing of certain components of the graded curvature tensor, a condition that plays a role similar to the closedness of a graded symplectic form in graded symplectic geometry: It amounts to determining a graded metric by the data {g, ω, Δ′}, whereg is a metric tensor onM, ω 0 is a fibered nondegenerate skewsymmetric bilinear form on the Batchelor bundleE → M, and Δ′ is a connection onE satisfying Δ′ω = 0. Odd metrics are also studied under the same criterion and they are specified by the data {κ, Δ′}, with κ ∈ Hom (TM, E) invertible, and Δ′κ = 0. It is shown in general that even graded metrics of constant graded curvature can be supported only over a Riemannian manifold of constant curvature, and the curvature of Δ′ onE satisfiesRΔ′ (X,Y)2 = 0. It is shown that graded Ricci flat even metrics are supported over Ricci flat manifolds and the curvature of the connection Δ′ satisfies a specific set of equations. 0 Finally, graded Einstein even metrics can be supported only over Ricci flat Riemannian manifolds. Related results for graded metrics on Ω(M) are also discussed.

https://doi.org/10.1007/bf02760685