6533b830fe1ef96bd1296766
RESEARCH PRODUCT
Low-Noise Amplification and Frequency Conversion with a Multiport Microwave Optomechanical Device
Caspar Ockeloen-korppiJuha-matti PirkkalainenMika SillanpääTero T. HeikkiläErno DamskäggFrancesco Masselsubject
QC1-999ta221nanorummutelectromagnetic signalsmicrowave signalsFOS: Physical sciencesGeneral Physics and Astronomy02 engineering and technology01 natural sciencesmikroaallotFrequency conversionkvanttirajatMesoscale and Nanoscale Physics (cond-mat.mes-hall)0103 physical sciences010306 general physicsQuantumComputer Science::DatabasesPhysicsQuantum Physicssähkömagneettiset signaalitCondensed Matter - Mesoscale and Nanoscale Physicsta114business.industryPhysicsfungifood and beverages021001 nanoscience & nanotechnologyquantum limitsLow noiseOptoelectronicsQuantum Physics (quant-ph)0210 nano-technologybusinessSignal amplificationMicrowavedescription
High-gain amplifiers of electromagnetic signals operating near the quantum limit are crucial for quantum information systems and ultrasensitive quantum measurements. However, the existing techniques have a limited gain-bandwidth product and only operate with weak input signals. Here we demonstrate a two-port optomechanical scheme for amplification and routing of microwave signals, a system that simultaneously performs high-gain amplification and frequency conversion in the quantum regime. Our amplifier, implemented in a two-cavity microwave optomechanical device, shows 41 dB of gain and has a high dynamic range, handling input signals up to $10^{13}$ photons per second, three orders of magnitude more than corresponding Josephson parametric amplifiers. We show that although the active medium, the mechanical resonator, is at a high temperature far from the quantum limit, only 4.6 quanta of noise is added to the input signal. Our method can be readily applied to a wide variety of optomechanical systems, including hybrid optical-microwave systems, creating a universal hub for signals at the quantum level.
year | journal | country | edition | language |
---|---|---|---|---|
2016-10-28 | Physical Review X |