0000000000123775

AUTHOR

Juha-matti Pirkkalainen

showing 4 related works from this author

Squeezing of Quantum Noise of Motion in a Micromechanical Resonator

2015

A pair of conjugate observables, such as the quadrature amplitudes of harmonic motion, have fundamental fluctuations which are bound by the Heisenberg uncertainty relation. However, in a squeezed quantum state, fluctuations of a quantity can be reduced below the standard quantum limit, at the cost of increased fluctuations of the conjugate variable. Here we prepare a nearly macroscopic moving body, realized as a micromechanical resonator, in a squeezed quantum state. We obtain squeezing of one quadrature amplitude $1.1 \pm 0.4$ dB below the standard quantum limit, thus achieving a long-standing goal of obtaining motional squeezing in a macroscopic object.

educationta221squeezingGeneral Physics and AstronomyQuantum measurementMotion (geometry)FOS: Physical sciencesQuantitative Biology::Subcellular ProcessesResonatorMeasurement theoryVibrating membraneQuantum mechanicsmotionMesoscale and Nanoscale Physics (cond-mat.mes-hall)Physics::Chemical Physicsta218Physicsmicromechanical resonatorta214Condensed Matter - Mesoscale and Nanoscale Physicsta114Quantum limitPhysicsQuantum noisequantum noise16. Peace & justicenanomechanicsquantum physicsQuantum Physics (quant-ph)NanomechanicsPHYSICAL REVIEW LETTERS
researchProduct

Cavity optomechanics mediated by a quantum two-level system

2015

Coupling electromagnetic waves in a cavity and mechanical vibrations via the radiation pressure of photons is a promising platform for investigations of quantum–mechanical properties of motion. A drawback is that the effect of one photon tends to be tiny, and hence one of the pressing challenges is to substantially increase the interaction strength. A novel scenario is to introduce into the setup a quantum two-level system (qubit), which, besides strengthening the coupling, allows for rich physics via strongly enhanced nonlinearities. Here we present a design of cavity optomechanics in the microwave frequency regime involving a Josephson junction qubit. We demonstrate boosting of the radiat…

Josephson effectPhotonOrders of magnitude (temperature)Josephson junction qubitta221General Physics and AstronomyPhysics::Optics02 engineering and technologyBioinformatics01 natural sciencesArticleGeneral Biochemistry Genetics and Molecular BiologyResonatorComputer Science::Emerging TechnologiesCondensed Matter::SuperconductivityQuantum mechanics0103 physical sciences010306 general physicsQuantumOptomechanicsta218PhysicsMultidisciplinaryta214ta114Quantum limitGeneral Chemistrycavity optomechanics021001 nanoscience & nanotechnologyQubit0210 nano-technologyNATURE COMMUNICATIONS
researchProduct

Noiseless Quantum Measurement and Squeezing of Microwave Fields Utilizing Mechanical Vibrations

2017

A process which strongly amplifies both quadrature amplitudes of an oscillatory signal necessarily adds noise. Alternatively, if the information in one quadrature is lost in phase-sensitive amplification, it is possible to completely reconstruct the other quadrature. Here we demonstrate such a nearly perfect phase-sensitive measurement using a cavity optomechanical scheme, characterized by an extremely small noise less than 0.2 quanta. We also observe microwave radiation strongly squeezed by 8 dB below vacuum. A source of bright squeezed microwaves opens up applications in manipulations of quantum systems, and noiseless amplification can be used even at modest cryogenic temperatures.

noiseFOS: Physical sciencesGeneral Physics and AstronomyQuantum measurement02 engineering and technology01 natural sciencesOpticsMesoscale and Nanoscale Physics (cond-mat.mes-hall)0103 physical sciences010306 general physicsQuantumPhysicsQuantum PhysicsCondensed Matter - Mesoscale and Nanoscale Physicsta114business.industrymittausnoiseless amplifications021001 nanoscience & nanotechnologymeluQuadrature (astronomy)VibrationAmplitudequantum systemsmeasurementQuantum Physics (quant-ph)0210 nano-technologybusinesscryogenic temperaturesMicrowave
researchProduct

Low-Noise Amplification and Frequency Conversion with a Multiport Microwave Optomechanical Device

2016

High-gain amplifiers of electromagnetic signals operating near the quantum limit are crucial for quantum information systems and ultrasensitive quantum measurements. However, the existing techniques have a limited gain-bandwidth product and only operate with weak input signals. Here we demonstrate a two-port optomechanical scheme for amplification and routing of microwave signals, a system that simultaneously performs high-gain amplification and frequency conversion in the quantum regime. Our amplifier, implemented in a two-cavity microwave optomechanical device, shows 41 dB of gain and has a high dynamic range, handling input signals up to $10^{13}$ photons per second, three orders of magn…

QC1-999ta221nanorummutelectromagnetic signalsmicrowave signalsFOS: Physical sciencesGeneral Physics and Astronomy02 engineering and technology01 natural sciencesmikroaallotFrequency conversionkvanttirajatMesoscale and Nanoscale Physics (cond-mat.mes-hall)0103 physical sciences010306 general physicsQuantumComputer Science::DatabasesPhysicsQuantum Physicssähkömagneettiset signaalitCondensed Matter - Mesoscale and Nanoscale Physicsta114business.industryPhysicsfungifood and beverages021001 nanoscience & nanotechnologyquantum limitsLow noiseOptoelectronicsQuantum Physics (quant-ph)0210 nano-technologybusinessSignal amplificationMicrowavePhysical Review X
researchProduct