6533b7d0fe1ef96bd125addb
RESEARCH PRODUCT
Squeezing of Quantum Noise of Motion in a Micromechanical Resonator
Francesco MasselMika SillanpääErno DamskäggJuha-matti PirkkalainenM. Brandtsubject
educationta221squeezingGeneral Physics and AstronomyQuantum measurementMotion (geometry)FOS: Physical sciencesQuantitative Biology::Subcellular ProcessesResonatorMeasurement theoryVibrating membraneQuantum mechanicsmotionMesoscale and Nanoscale Physics (cond-mat.mes-hall)Physics::Chemical Physicsta218Physicsmicromechanical resonatorta214Condensed Matter - Mesoscale and Nanoscale Physicsta114Quantum limitPhysicsQuantum noisequantum noise16. Peace & justicenanomechanicsquantum physicsQuantum Physics (quant-ph)Nanomechanicsdescription
A pair of conjugate observables, such as the quadrature amplitudes of harmonic motion, have fundamental fluctuations which are bound by the Heisenberg uncertainty relation. However, in a squeezed quantum state, fluctuations of a quantity can be reduced below the standard quantum limit, at the cost of increased fluctuations of the conjugate variable. Here we prepare a nearly macroscopic moving body, realized as a micromechanical resonator, in a squeezed quantum state. We obtain squeezing of one quadrature amplitude $1.1 \pm 0.4$ dB below the standard quantum limit, thus achieving a long-standing goal of obtaining motional squeezing in a macroscopic object.
year | journal | country | edition | language |
---|---|---|---|---|
2015-07-15 | PHYSICAL REVIEW LETTERS |