6533b830fe1ef96bd1296776
RESEARCH PRODUCT
A DERIVATION OF THE VLASOV-NAVIER-STOKES MODEL FOR AEROSOL FLOWS FROM KINETIC THEORY
Etienne BernardLaurent DesvillettesFrançois GolseValeria Riccisubject
MSC: 35Q20 35B25 (82C40 76T15 76D05)aerosolVlasov-Navier-Stokes systemGeneral Mathematics01 natural sciencesPhysics::Fluid DynamicsBoltzmann equationsymbols.namesakeMathematics - Analysis of PDEsThermal velocityPhase (matter)35Q20 35B25 (82C40 76T15 76D05)SpraysFOS: Mathematics[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP]0101 mathematicsSettore MAT/07 - Fisica MatematicaPhysicsPropellantAerosolsGas mixtureApplied Mathematics010102 general mathematicsMechanicsMass ratioBoltzmann equationAerosol010101 applied mathematicsDistribution functionsprayBoltzmann constantsymbolsHydrodynamic limitAnalysis of PDEs (math.AP)description
This article proposes a derivation of the Vlasov-Navier-Stokes system for spray/aerosol flows. The distribution function of the dispersed phase is governed by a Vlasov-equation, while the velocity field of the propellant satisfies the Navier-Stokes equations for incompressible fluids. The dynamics of the dispersed phase and of the propellant are coupled through the drag force exerted by the propellant on the dispersed phase. We present a formal derivation of this model from a multiphase Boltzmann system for a binary gaseous mixture, involving the droplets/dust particles in the dispersed phase as one species, and the gas molecules as the other species. Under suitable assumptions on the collision kernels, we prove that the sequences of solutions to the multiphase Boltzmann system converge to distributional solutions to the Vlasov-Navier-Stokes equation in some appropriate distinguished scaling limit. Specifically, we assume (a) that the mass ratio of the gas molecules to the dust particles/droplets is small, (b) that the thermal speed of the dust particles/droplets is much smaller than that of the gas molecules and (c) that the mass density of the gas and of the dispersed phase are of the same order of magnitude.
year | journal | country | edition | language |
---|---|---|---|---|
2016-08-01 |