6533b830fe1ef96bd1297bd2
RESEARCH PRODUCT
Improvement of oxidation resistance of polymer-based nanocomposites through sonication of carbonaceous nanoparticles
Giuseppe LazzaraCristian GambarottiFrancesca D'annaFilippo ParisiNadka Tzankova DintchevaBartolomeo MegnaSalvatore MarulloRosalia Teresisubject
Materials scienceAcoustics and UltrasonicsCNTRadicalSonicationUHMWPENanoparticle02 engineering and technologyCarbon nanotube010402 general chemistry01 natural sciencesRadical scavenging activitylaw.inventionInorganic ChemistrylawChemical Engineering (miscellaneous)Environmental ChemistryRadiology Nuclear Medicine and imagingReactivity (chemistry)Settore CHIM/02 - Chimica Fisicachemistry.chemical_classificationNanocompositeOrganic ChemistryOxidation resistancePolymerCarbon blackSettore CHIM/06 - Chimica Organica021001 nanoscience & nanotechnologyCB0104 chemical sciencesSettore ING-IND/22 - Scienza E Tecnologia Dei MaterialichemistryChemical engineering0210 nano-technologydescription
Abstract The work aim is focused on two different aspects: first, the investigation of the effect of extended ultra-sound-assisted treatment (us) of carbonaceous nanoparticles, such as carbon nanotubes (CNTs) and carbon black (CB), on their radical scavenging activity, and second, the investigation of the oxidative resistance of polymer-based nanocomposites, containing us-treated CNTs and CB. Particularly, the CNTs and CB have been subjected to us sonication for different time intervals and the performed analysis reveals that both kinds of nanoparticles show decreased average hydrodynamic diameters and large content of surface defects. Really, the increased content of CNTs and CB defects, achieved during the sonication time, leads to an increased reactivity toward 1,1-diphenyl-2-pycryl (DPPH) radicals and an enhanced anti-oxidant activity toward macro-radicals, coming from the photo-degradation of the host polymer matrix. The studies of photo-oxidative behavior of the nanocomposites, based on Ultra High Molecular Weight (UHMWPE), reveal that the us treatment of the nanoparticles has a benefic effect on the oxidative resistance of the nanocomposites, especially at long exposure times. Overall, the ultra-sound-assisted treatment can be considered twofold powerful tool: (i) for disruption of the nanoparticles aggregations, and (ii) for capitalization of surface defects, amplifying and tuning in a controlled way the radical scavenging activity of the carbonaceous nanoparticles.
year | journal | country | edition | language |
---|---|---|---|---|
2020-03-01 |