6533b832fe1ef96bd129ae0e
RESEARCH PRODUCT
Inactivation of a plastid evolutionary conserved gene affects PSII electron transport, life span and fitness of tobacco plants
Francisco GasullaAlfredo GuéraE. BarrenoJ. M. ZapataAlberto Esteban-carrascosubject
ChlorophyllChloroplastsTime FactorsLightPhotosystem IIPhysiologyNicotiana tabacumPlant SciencePhotosystem IPhotosynthesisAntioxidantsFluorescenceElectron Transportchemistry.chemical_compoundTobaccoBotanyGene SilencingPhotosynthesisChlorophyll fluorescencePlant ProteinsPhotosystem I Protein ComplexbiologyChlorophyll AReproductionPhotosystem II Protein Complexfood and beveragesNADH Dehydrogenasebiology.organism_classificationChloroplastPhenotypechemistryChlorophyllThylakoidBiophysicsdescription
Chloroplasts contain a plastoquinone-NADH-oxidoreductase (Ndh) complex involved in protection against stress and the maintenance of cyclic electron flow. Inactivation of the Ndh complex delays the development of leaf senescence symptoms. Chlorophyll a fluorescence measurements, blue native gel electrophoresis, immunodetection and other techniques were employed to study tobacco (Nicotiana tabacum) Ndh-defective mutants (DeltandhF). The DeltandhF mutants compared with wild-type plants presented: (i) higher photosystem II : photosystem I (PSII : PSI) ratios; (ii) similar or higher levels of ascorbate, carotenoids, thylakoid peroxidase and superoxide dismutase, yield (Phi(PSII)) and maximal photochemical efficiency of PSII levels (F(v)/F(m)) than wild-type plant leaves of the same age; (iii) lower values of nonphotochemical quenching yield (Phi(NPQ)), but not at very high light intensities or during induced leaf senescence; (iv) a similar decrease of antioxidants during senescence; (v) no significant differences in the total foliar area and apical growth rate; and (vi) a production of viable seeds significantly higher than wild-type plants. These results suggest that the Ndh complex is involved in one of the redundant mechanisms that play a safety role in photosynthesis under stress, which has been conserved during evolution, but that its deletion increases fitness when plants are grown under favourable controlled conditions.
year | journal | country | edition | language |
---|---|---|---|---|
2007-01-26 | New Phytologist |