6533b832fe1ef96bd129aee7

RESEARCH PRODUCT

Constraints on bosonic dark matter from ultralow-field nuclear magnetic resonance

Surjeet RajendranTeng WuAntoine GarconDerek F. Jackson KimballArne WickenbrockJohn W. BlanchardAlexander O. SushkovNataniel L. FigueroaPeter W. GrahamYevgeny V. StadnikDmitry BudkerDmitry BudkerGary P. Centers

subject

Particle physicsPhotonField (physics)Atomic Physics (physics.atom-ph)Dark matterFOS: Physical sciencesAstrophysics::Cosmology and Extragalactic Astrophysics01 natural sciences7. Clean energyHigh Energy Physics - ExperimentPhysics - Atomic PhysicsHigh Energy Physics - Experiment (hep-ex)Computer Science::Emerging TechnologiesNuclear magnetic resonancePhysics - Chemical Physics0103 physical sciences010306 general physicsSpin (physics)AxionResearch ArticlesBosonPhysicsChemical Physics (physics.chem-ph)MultidisciplinarySpins010308 nuclear & particles physicsPhysicsSciAdv r-articlesHaloddc:500Research Article

description

The nature of dark matter, the invisible substance making up over $80\%$ of the matter in the Universe, is one of the most fundamental mysteries of modern physics. Ultralight bosons such as axions, axion-like particles or dark photons could make up most of the dark matter. Couplings between such bosons and nuclear spins may enable their direct detection via nuclear magnetic resonance (NMR) spectroscopy: as nuclear spins move through the galactic dark-matter halo, they couple to dark-matter and behave as if they were in an oscillating magnetic field, generating a dark-matter-driven NMR signal. As part of the Cosmic Axion Spin Precession Experiment (CASPEr), an NMR-based dark-matter search, we use ultralow-field NMR to probe the axion-fermion "wind" coupling and dark-photon couplings to nuclear spins. No dark matter signal was detected above background, establishing new experimental bounds for dark-matter bosons with masses ranging from $1.8\times 10^{-16}$ to $7.8\times 10^{-14}$ eV.

10.1126/sciadv.aax4539https://repository.gsi.de/record/237366