6533b832fe1ef96bd129b0b4
RESEARCH PRODUCT
Lebesguen integraali - Rieszin määritelmä
Taru Lehtonensubject
konvergenssiRiemannin integraalikonvergenssilauseintegraalilaskentaLebesguen integraaliyläfunktiodescription
Tutkielmassa tarkastellaan ensin Riemannin integraalia ja sen ongelmia rajankäyntitilanteissa. Suurin ongelma rajankäynnissä on, että Riemannintegraalien jonon raja-arvo ei välttämättä aina ole sama kuin rajafunktion Riemann-integraali. Lisäksi todetaan, että Riemann-integroituvien funktioiden joukko on melko pieni. Seuraavana esitellään porrasfunktioiden integraali ominaisuuksineen. Tämän jälkeen perehdytään Riemann-integroituvien funktioiden luokkaa suurempaan yläfunktioiden luokkaan L+ ja lisäksi osoitetaan, että Riemann-integroituvat funktiot kuuluvat yläfunktioiden luokkaan. Yläfunktioiden luokan esittelyn jälkeen määritellään Lebesguen integraali ja perehdytään sen ominaisuuksiin. Lebesguen integraali määritellään Rieszin määritelmän mukaan, sillä se on tiivistetympi, suoraviivaisempi ja johtaa nopeammin asian ytimeen kuin Lebesguen alkuperäinen määritelmä. Lisäksi laajennetaan yläfunktioiden luokka Lebesgue-integroituvien funktioiden luokkaan L ja osoitetaan tämän olevan selvästi suurempi kuin yläfunktioiden luokka. Viimeisessä kappaleessa perehdytään Lebesguen integraalin rajankäyntiin monotonisen konvergenssin lauseen ja dominoidun konvergenssin lauseen avulla. Dominoidun konvergenssin lause on yksi Lebesguen integraalin tärkeimmistä tuloksista. Tiivistetysti konvergenssilauseiden sanoma on, että integroinnin ja rajankäynnin järjestystä voidaan vaihtaa.
| year | journal | country | edition | language |
|---|---|---|---|---|
| 2016-01-01 |