6533b833fe1ef96bd129b7dc

RESEARCH PRODUCT

Evaluation of a new Cr-free alloy as interconnect material for hydrogen production by high temperature water vapour electrolysis: Study in cathode atmosphere

Maria Rosa ArdigoRichard BousquetClara DesgrangesSébastien ChevalierI. Popa

subject

Materials scienceHydrogen020209 energyAlloyEnergy Engineering and Power Technologychemistry.chemical_element02 engineering and technologyengineering.material7. Clean energylaw.inventionELECTRICAL-CONDUCTIVITYlawCHROMIUMSOFCS0202 electrical engineering electronic engineering information engineering[CHIM]Chemical SciencesDEPOSITIONOXIDATION-KINETICSHydrogen productionOXIDE FUEL-CELLSElectrolysisRenewable Energy Sustainability and the EnvironmentMetallurgy021001 nanoscience & nanotechnologyCondensed Matter PhysicsCathodeDIFFUSIONFuel TechnologyMETALLIC INTERCONNECTchemistryHigh-temperature electrolysisengineeringTHERMAL-EXPANSION0210 nano-technologyPolymer electrolyte membrane electrolysisWater vaporRESISTANCE

description

International audience; For economic and ecological reasons, hydrogen is considered as a major energetic vector for the future. Hydrogen production via high temperature water vapour electrolysis (HTE) is a promising technology. A major technical difficulty related to high temperature water vapour electrolysis is the development of interconnects working efficiently for a long period. Working temperature of 800 degrees C enables the use of metallic materials as interconnects. High temperature corrosion behaviour and electrical conductivity of a new Cr-free Fe-Ni-Co alloy were tested in cathode atmosphere (H-2/H2O) at 800 degrees C. The alloy exhibits a poor oxidation resistance but an excellent ASR parameter, as a result of the formation of a highly-conductive Cr-free surface spinel layer. Moreover, the role of water vapour and hydrogen was discussed and a diffusion mechanism in cathode atmosphere could be suggested.

https://hal.archives-ouvertes.fr/hal-00760345