0000000000083846
AUTHOR
I. Popa
Analysis of laser shock waves and resulting surface deformations in an Al-Cu-Li aluminium alloy
Abstract Laser shock processing is now a recognized surface treatment for improving fatigue or corrosion behaviour of metallic materials through the generation of a compressive stress field. In turn, the analysis of shock wave propagation is of primary importance to predict numerically morphological and mechanical surface modifications. Considering experimental and numerical analyses of shock wave propagation, and surface deformations induced by single impacts, a 2050 aluminum alloy having different microstructures was investigated under laser-shock loading. In a first step, the evolution of shock wave attenuation and elastic precursor amplitude was correctly reproduced by finite element si…
Precise Measurement of the Neutron Magnetic Form FactorGMnin the Few-GeV2Region
The neutron elastic magnetic form factor was extracted from quasielastic electron scattering on deuterium over the range Q;{2}=1.0-4.8 GeV2 with the CLAS detector at Jefferson Lab. High precision was achieved with a ratio technique and a simultaneous in situ calibration of the neutron detection efficiency. Neutrons were detected with electromagnetic calorimeters and time-of-flight scintillators at two beam energies. The dipole parametrization gives a good description of the data.
Experimental and Numerical Analysis of the Distribution of Residual Stresses Induced by Laser Shock Peening in a 2050-T8 Aluminium Alloy
Laser shock peening (LSP) is an innovative surface treatment technique successfully applied to improving fatigue performance of metallic material. The specific characteristic of (LSP) is the generation of a low work-hardening and a deep compressive residual stresses mechanically produced by a laser-induced shock wave propagating in the material. The aim of this study is to analyse the residual stress distribution induced by laser peening in 2050-T8 aluminium alloy experimentally by the X-ray diffraction technique (method sin2Y) and numerically, by a finite element numerical modelling. A specific focus was put on the residual stress distribution along the surface of the impacted material.
Influence of the Electrochemical Parameters on the Properties of Electroplated Au-Cu Alloys
Effect of surface finishing on the oxidation behaviour of a ferritic stainless steel
Abstract The corrosion behaviour and the oxidation mechanism of a ferritic stainless steel, K41X (AISI 441), were evaluated at 800 °C in water vapour hydrogen enriched atmosphere. Mirror polished samples were compared to as-rolled K41X material. Two different oxidation behaviours were observed depending on the surface finishing: a protective double (Cr,Mn) 3 O 4 /Cr 2 O 3 scale formed on the polished samples whereas external Fe 3 O 4 and (Cr,Fe) 2 O 3 oxides grew on the raw steel. Moreover, isotopic marker experiments combined with SIMS analyses revealed different growth mechanisms. The influence of surface finishing on the corrosion products and growth mechanisms was apprehended by means o…
New insight into δ-Pu alloy oxidation kinetics highlighted by using in-situ X-ray diffraction coupled with an original Rietveld refinement method
Abstract The reactivity of a δ-Pu alloy was studied under dry oxygen at different temperatures. Phase analysis has shown the presence of α-and β-Pu2O3, PuO2, as well as the destabilisation of the δ-phase. The oxidation kinetics were studied using in-situ X-ray diffraction coupled with an original method of Rietveld refinement enabling an individual monitoring of the growth of each oxide. The results have evidenced a parabolic stage resulting from the thickening of the α-Pu2O3 layer, in which a compressive stress state develops. This stage is followed by the linear growth of a porous PuO2 scale.
Effect of coatings on a commercial stainless steel for SOFC interconnect application in anode atmosphere
International audience
Coated interconnects development for high temperature water vapour electrolysis: Study in anode atmospher
International audience; High temperature water vapour electrolysis (HTE) is an efficient technology for hydrogen production. In this context, a commercial stainless steel, K41X (AISI 441), was chosen as interconnect. In a previous paper, the high temperature corrosion and the electrical conductivity were evaluated in both anode (O-2-H2O) and cathode (H-2-H2O) atmosphere at 800 degrees C. In O-2-H2O atmosphere, the formation of a thin chromia protective layer was observed. Nevertheless, the ASR parameter measured was higher than the maximum accepted value. These results, in addition with chromium evaporation measurements, proved that the K41X alloy is not suitable for HTE interconnect applic…
Evaluation of a new Cr-free alloy as interconnect material for hydrogen production by high temperature water vapour electrolysis: Study in cathode atmosphere
International audience; For economic and ecological reasons, hydrogen is considered as a major energetic vector for the future. Hydrogen production via high temperature water vapour electrolysis (HTE) is a promising technology. A major technical difficulty related to high temperature water vapour electrolysis is the development of interconnects working efficiently for a long period. Working temperature of 800 degrees C enables the use of metallic materials as interconnects. High temperature corrosion behaviour and electrical conductivity of a new Cr-free Fe-Ni-Co alloy were tested in cathode atmosphere (H-2/H2O) at 800 degrees C. The alloy exhibits a poor oxidation resistance but an excelle…
Finite element analysis of laser shock peening of 2050-T8 aluminum alloy
Laser shock processing is a recently developed surface treatment designed to improve the mechanical properties and fatigue performance of materials, by inducing a deep compressive residual stress field. The purpose of this work is to investigate the residual stress distribution induced by laser shock processing in a 2050-T8 aeronautical aluminium alloy with both X-ray diffraction measurements and 3D finite element simulation. The method of X-ray diffraction is extensively used to characterize the crystallographic texture and the residual stress crystalline materials at different scales (macroscopic, mesoscopic and microscopic).Shock loading and materials’ dynamic response are experimentally…
Effect of coatings on long term behaviour of a commercial stainless steel for solid oxide electrolyser cell interconnect application in H2 /H2O atmosphere
Abstract K41X (AISI 441) stainless steel evidenced a high electrical conductivity after 3000 h ageing in H 2 /H 2 O side when used as interconnect for solid oxide electrolyser cells (SOEC) working at 800 °C. Perovskite (La 1 − x Sr x MnO 3 − δ ) and spinel (Co 3 O 4 ) oxides coatings were applied on the surface of the ferritic steel for ageing at 800 °C for 3000 h. Both coatings improved the behaviour of the steel and give interesting opportunities to use the K41X steel as interconnect for hydrogen production via high temperature steam electrolysis. Co 3 O 4 reduced into Co leading to a very good Area Specific Resistance (ASR) parameter, 0.038 Ω cm 2 . Despite a good ASR (0.06 Ω cm 2 ), La …
Micro-Raman analysis of the fuel-cladding interface in a high burnup PWR fuel rod
International audience; New insights on the fuel-cladding bonding layer in high burnup nuclear fuel were obtained using micro-Raman spectroscopy. A specimen was specifically prepared from a fuel rod which had been irradiated to an average burnup of 56 GWd.tU-1 in a pressurized water reactor (PWR). Both inner and outer corrosion scale regions were investigated. A 10-15 et956;m thick zirconia bonding layer between fuel and cladding materials which consisted of three distinct regions was observed. Close to the fuel, tetragonal, then monoclinic zirconia was identified as the main phases. Close to the bonding layer-cladding interface, peculiar Raman signals were observed. Similar signals were ob…
Dual atmosphere study of the K41X stainless steel for interconnect application in high temperature water vapour electrolysis
Abstract High temperature water vapour electrolysis (HTE) is one of the most efficient technologies for mass hydrogen production. A major technical difficulty related to high temperature water vapour electrolysis is the development of interconnects working efficiently for a long period. Working temperature of 800 °C enables the use of metallic materials as interconnects. High temperature corrosion behaviour and electrical conductivity of a commercial stainless steel, K41X (AISI 441), were tested in HTE dual atmosphere (95%O 2 -5%H 2 0/10%H 2 -90%H 2 O) at 800 °C. The alloy exhibits a very good oxidation resistance compared to single atmosphere tests. However, a supplied electrical current s…
CHAPTER 6 Development of SOFC Interconnect Stainless Steels
The chapter introduces components and working principle of solid oxide fuel cells (SOFCs). It is followed by the explanation on the choices of materials focussing on ferritic stainless steels. The review is further made on the required properties of these steels, i.e. low oxidation rate, low chromium species volatilisation rate, high electrical conductivity and good scale adhesion. For the oxidation aspect, the behaviour of stainless steel interconnect in cathode, anode (hydrogen and biogas), and dual atmospheres are described. Surface modification by pre-oxidation and coatings to improve the oxide electrical conductivity and to reduce chromium species volatilisation is finally reviewed.
NaCl induced corrosion of Ti-6Al-4V alloy at high temperature
International audience; This paper presents a study on the Ti-6Al-4V behaviour in presence of NaCl deposit under dry and moistair environments at 560◦C. The results evidence a detrimental effect of the NaCl deposit with a synergisticeffect in presence of moist air environment. Treatments under dry and moist air with NaCl deposit for600 h, lead respectively to weight gains per unit area 5 and 15 times higher than observed under classicoxidation in dry air. Enhancement of the corrosion phenomenon is attributed to the presence of gaseousmetal chlorides, leading to the establishment of an active corrosion process.
Optimisation of metallic interconnects for hydrogen production by high temperature water vapour electrolysis
For economical and environmental reasons, hydrogen is considered as a major energetic vector for the future. Hydrogen production via high temperature water vapour electrolysis (HTE) is a promising technology. A major technical difficulty related to high temperature water vapour electrolysis is the development of interconnects working efficiently for a long period. Working temperature of 800°C enables the use of metallic materials as interconnects. Chromia forming alloys are among the best candidates. The interconnect material chosen in the present study is a ferritic stainless steel with 18% chromium content. High temperature corrosion resistance and electrical conductivity of the alloy was…
Influence of long-term ageing in solution containing chloride ions on the passivity and the corrosion resistance of duplex stainless steels
Abstract The influence of long-term ageing in NaCl on the passivity and the electrochemical behavior of UNS S32304 is studied. The passive film thickness, the Cr/Fe ratio and the chloride content were significantly increased after ageing. The chloride distribution depends on residual stresses, sample microstructure and surface preparation. Local electrochemical measurements revealed that pitting potentials are between 250–550 mV vs. SCE after electropolishing. The higher the chloride content, the lower the local pitting potential. It was also shown that the presence of chloride was balanced by the enrichment in chromium after ageing. Then no pitting potential could be measured.
Study of titanium alloy Ti6242S oxidation behaviour in air at 560°C: Effect of oxygen dissolution on lattice parameters
Abstract High temperature oxidation of titanium alloy Ti6242S was studied in air at 560 °C up to 10000 h. Oxidation kinetics obeys a parabolic law (kp = 8.7 × 10−15 g². cm−4.s-1). Oxygen dissolution in the metal was found to represent between 80 and 90% of the total mass gain. Thin oxide scales are mainly composed of TiO2, in top of which some alumina is present. Titanium nitride was detected as a very thin layer at the outer part of the metallic substrate. Underneath, the oxygen dissolution area was found to reach the maximum brittleness after 1000 h of oxidation.