6533b833fe1ef96bd129baf9
RESEARCH PRODUCT
Red Light Optogenetics in Neuroscience
Kimmo LehtinenMiriam S. NokiaHeikki Takalasubject
phytochromeoptogenetiikkabrainnear-infraredneurotieteetneuronneuroscienceopsinin vivo -menetelmäproteiinitpunainen (väri)optogeneticsaivotvalodescription
Optogenetics, a field concentrating on controlling cellular functions by means of light-activated proteins, has shown tremendous potential in neuroscience. It possesses superior spatiotemporal resolution compared to the surgical, electrical, and pharmacological methods traditionally used in studying brain function. A multitude of optogenetic tools for neuroscience have been created that, for example, enable the control of action potential generation via light-activated ion channels. Other optogenetic proteins have been used in the brain, for example, to control long-term potentiation or to ablate specific subtypes of neurons. In in vivo applications, however, the majority of optogenetic tools are operated with blue, green, or yellow light, which all have limited penetration in biological tissues compared to red light and especially infrared light. This difference is significant, especially considering the size of the rodent brain, a major research model in neuroscience. Our review will focus on the utilization of red light-operated optogenetic tools in neuroscience. We first outline the advantages of red light for in vivo studies. Then we provide a brief overview of the red light-activated optogenetic proteins and systems with a focus on new developments in the field. Finally, we will highlight different tools and applications, which further facilitate the use of red light optogenetics in neuroscience. peerReviewed
year | journal | country | edition | language |
---|---|---|---|---|
2022-01-01 |