6533b833fe1ef96bd129c9d2
RESEARCH PRODUCT
Eine statistische Theorie der Supraleitung
Karl-heinz Schrammsubject
General Physics and Astronomydescription
Fur die mittlere Energie Uv eines linearen Oszillators, der sich im (Strahlungs-) Gleichgewicht mit seiner Umgebung befindet, gilt das Plancksche Strahlungsgesetz Dessen statistische Herleitung erfolgt bekanntlich nach der Boltzmann-Statistik: Multipliziert man die quantentheoretisch zulassigen Energiestufen en = n · h · v (n = ganze Zahl) eines linearen Oszillators mit dem Boltzmann-Faktor und summiert uber alle n, so erhalt man eine geometrische Reihe mit dem gesuchten Ausdruck fur Uv als Summe. Offenbar gilt also das Plancksche Strahlungsgesetz nur fur Oszillatoren, die der Boltzmann-Statistik gehorchen. Es mus daher die Frage nach dem Strahlungsgesetz fur Oszillatoren anderer Statistiken aufgeworfen werden. Die vorliegende Arbeit beschaftigt sich mit dem Fermi-Oszillator, als dessen Prototyp das oszillierende Elektron angesehen wird. Im Teil 1 wird das Strahlungsgesetz des Fermi-Oszillators berechnet. Teil 2 diskutiert das Oszillatorgitter („Elektronenkristall„). Jeder oszillierende Gitterpunkt eines Gitters erfullt das gleiche Strahlungsgesetz Uv wie der einzelne Oszillator im Strahlungshohlraum; blos ist wegen der Koppelung der einzelnen Gitterpunkte untereinander die Frequenz v keine Konstante fur das Gitter. Um daher die Gitterenergie U als Funktion allein der Temperatur T zu erhalten, mus man die einzelnen Uv gewissermasen uber alle auftretenden Frequenzen mitteln. Fur den klassischen Kristall erfolgt dies nach der Debyeschen Eigenschwingungsmethode2). Dieses Verfahren wird hier auch auf den „Elektronenkristall” angewandt, wobei lediglich an die Stelle der klassischen Schallgeschwindigkeit c ein Entwicklungsparameter v tritt. Zur experimentellen Nachprufung der erhaltenen Formeln wird in Teil 3 ein Gedanke de lar Kronigs3) wieder aufgegriffen, demzufolge sich das System der Supraelektronen eines Supraleiters annahernd wie ein Elektronenkristall verhalten soll. Dadurch ergibt sich die Moglichkeit zur Herleitung eines Zusammenhanges zwischen den thermodynamischen Daten eines Supraleiters (spezifische Warme und kritisches Magnetfeld) und dem Strahlungsgesetz des Fermi-Oszillators. Die Existenz einer Sprungtemperatur T0 wird dabei nicht hergeleitet, sondern vorausgesetzt; sein gemessener Wert dient zur Elimination des Parameters v aus Teil 2. – Vergleiche zwischen Theorie und Experiment zeigen gute Ubereinstimmung.
year | journal | country | edition | language |
---|---|---|---|---|
1956-01-01 | Annalen der Physik |