6533b834fe1ef96bd129cb57

RESEARCH PRODUCT

The Use of Waste Hazelnut Shells as a Reinforcement in the Development of Green Biocomposites.

Manuela CerauloFrancesco Paolo La MantiaMaria Chiara MistrettaVincenzo Titone

subject

Settore ING-IND/22 - Scienza E Tecnologia Dei MaterialiPolymers and PlasticsGeneral Chemistrybiodegradable polymers; biocomposites; hazelnut shells; mechanical properties; dynamic mechanical analysis (DMA); rheologybiocomposites biodegradable polymers dynamic mechanical analysis (DMA) hazelnut shells mechanical properties rheology

description

Biodegradable Mater-Bi (MB) composites reinforced with hazelnut shell (HS) powder were prepared in a co-rotating twin-screw extruder followed by compression molding and injection molding. The effects of reinforcement on the morphology, static and dynamic mechanical properties, and thermal and rheological properties of MB/HS biocomposites were studied. Rheological tests showed that the incorporation of HS significantly increased the viscosity of composites with non-Newtonian behavior at low frequencies. On the other hand, a scanning electron microscope (SEM) examination revealed poor interfacial adhesion between the matrix and the filler. The thermal property results indicated that HS could act as a nucleating agent to promote the crystallization properties of biocomposites. Furthermore, the experimental results indicated that the addition of HS led to a significant improvement in the thermomechanical stability of the composites. This paper demonstrates that the incorporation of a low-cost waste product, such as hazelnut shells, is a practical way to produce low-cost biocomposites with good properties. With a content of HS of 10%, a remarkable improvement in the elastic modulus and impact strength was observed in both compression and injection-molded samples. With a higher content of HS, however, the processability in injection molding was strongly worsened.

10.3390/polym14112151https://pubmed.ncbi.nlm.nih.gov/35683824