6533b834fe1ef96bd129cc0f
RESEARCH PRODUCT
Resolving gas bubbles ascending in liquid metal from low-SNR neutron radiography images
Anders KaestnerMihails BirjukovsJan HovindMartins KlevsAndris JakovicsKnud ThomsenPavel TrtikDariusz Jakub Gawryluksubject
FOS: Computer and information sciencesLiquid metalTechnologyMaterials scienceQH301-705.5low signal-to-noise ratio (SNR)BubbleAcousticsNoise reductionQC1-999Computer Vision and Pattern Recognition (cs.CV)dynamic neutron imagingComputer Science - Computer Vision and Pattern Recognitionmetohydrodynamics (MHD)FOS: Physical sciencesImage processingdenoisingGeneral Materials ScienceSegmentationBiology (General)InstrumentationQD1-999Fluid Flow and Transfer ProcessesProcess Chemistry and TechnologyNeutron imagingTPhysicssegmentationGeneral EngineeringFluid Dynamics (physics.flu-dyn)Experimental dataPhysics - Fluid DynamicsEngineering (General). Civil engineering (General)Computer Science Applicationsimage processingtwo-phase flowChemistryliquid metalComputer Science::Computer Vision and Pattern RecognitionTwo-phase flowTA1-2040bubble flowdescription
We demonstrate a new image processing methodology for resolving gas bubbles travelling through liquid metal from dynamic neutron radiography images with an intrinsically low signal-to-noise ratio. Image pre-processing, denoising and bubble segmentation are described in detail, with practical recommendations. Experimental validation is presented—stationary and moving reference bodies with neutron-transparent cavities are radiographed with imaging conditions representative of the cases with bubbles in liquid metal. The new methods are applied to our experimental data from previous and recent imaging campaigns, and the performance of the methods proposed in this paper is compared against our previously achieved results. Significant improvements are observed as well as the capacity to reliably extract physically meaningful information from measurements performed under highly adverse imaging conditions. The showcased image processing solution and separate elements thereof are readily extendable beyond the present application, and have been made open-source.
year | journal | country | edition | language |
---|---|---|---|---|
2021-10-01 |