6533b834fe1ef96bd129cd26

RESEARCH PRODUCT

Thermal equation of state of ruthenium characterized by resistively heated diamond anvil cell

Daniel Diaz AnichtchenkoClaudio CazorlaDaniel ErrandoneaSilvia BoccatoS. G. MacleodChristine M. BeaversCatalin PopescuVirginia MonteseguroSimone AnzelliniEnrico Bandiello

subject

DiffractionEquation of stateMaterials sciencePhononAb initioPHASE-TRANSFORMATIONSThermodynamicschemistry.chemical_elementlcsh:MedicineRU02 engineering and technologyPRESSUREFE01 natural sciencesArticlePARAMETERSDiamond anvil celllaw.inventionCondensed Matter::Materials SciencelawCondensed Matter::SuperconductivityPhase (matter)0103 physical sciencesPROGRAMCondensed-matter physics010306 general physicsAuthor Correctionlcsh:ScienceMultidisciplinaryPhysicslcsh:R021001 nanoscience & nanotechnologySynchrotronRutheniumchemistrylcsh:QOSMIUMMETALS0210 nano-technology

description

AbstractThe high-pressure and high-temperature structural and chemical stability of ruthenium has been investigated via synchrotron X-ray diffraction using a resistively heated diamond anvil cell. In the present experiment, ruthenium remains stable in the hcp phase up to 150 GPa and 960 K. The thermal equation of state has been determined based upon the data collected following four different isotherms. A quasi-hydrostatic equation of state at ambient temperature has also been characterized up to 150 GPa. The measured equation of state and structural parameters have been compared to the results of ab initio simulations performed with several exchange-correlation functionals. The agreement between theory and experiments is generally quite good. Phonon calculations were also carried out to show that hcp ruthenium is not only structurally but also dynamically stable up to extreme pressures. These calculations also allow the pressure dependence of the Raman-active E2g mode and the silent B1g mode of Ru to be determined.

10.1038/s41598-019-51037-8http://link.springer.com/article/10.1038/s41598-019-51037-8