6533b834fe1ef96bd129ce88

RESEARCH PRODUCT

Coreconstitution of bacterial ATP synthase with monomeric bacteriorhodopsin into liposomes. A comparison between the efficiency of monomeric bacteriorhodopsin and purple membrane patches in coreconstitution experiments

Matthias GutweilerKlaus DoseRainer PabstNorbert Wagner

subject

Liposomefood.ingredientLightATP synthasebiologyChemiosmosisKineticsBacteriorhodopsinRhodospirillum rubrumBiochemistryLecithinKineticsProton-Translocating ATPaseschemistry.chemical_compoundMonomerfoodMembranechemistryBiochemistryBacteriorhodopsinsLiposomesbiology.protein

description

The conditions for coreconstitution of a bacterial ATP synthase and bacteriorhodopsin into lecithin liposomes and for light driven ATP synthesis have been optimized. A rate of maximally 280 nmol ATP min-1 mg ATP synthase-1 was achieved with monomerized bacteriorhodopsin compared with a rate of up to 45 nmol ATP min-1 mg-1 found for proteoliposomes containing bacteriorhodopsin in the form of purple membrane patches. The different rates are explained by the finding that monomeric bacteriorhodopsin is more homogeneously distributed among the liposomes than the purple membrane patches. The final activities depended on both the purification method for the two proteins and the coreconstitution procedure. Furthermore, the ratio (lipid to bacteriorhodopsin to ATP synthase) could be optimized. Light-driven ATP synthesis depends also on the type of detergent used. The best result was obtained by deoxycholate. Also the relationship between proton translocation (by bacteriorhodopsin) and ATP synthesis activity was measured. A constant H+/ATP ratio was found at higher light intensities. This ratio increased strongly at lower light intensities.

https://doi.org/10.1111/j.1432-1033.1987.tb11209.x