6533b834fe1ef96bd129d416
RESEARCH PRODUCT
Sine-Gordon Statistical Mechanics
Jussi TimonenD. J. PillingR. K. Bulloughsubject
Physicssymbols.namesakesymbolsCanonical transformationStatistical mechanicsSineHamiltonian (quantum mechanics)Mathematical physicsdescription
The Classical partition-function $$ Z = \int {D\Pi {\text{ }}D\phi {\text{ }}\exp - } \beta H\left[ \phi \right]$$ (1) in which \( {\beta ^{{ - 1}}} = {k_{B}}T{\text{ and }}H\left[ \phi \right]\) is the sine-Gordon (s-G) Hamiltonian $$ H\left[ \phi \right] = {\Upsilon _{0}}^{{ - 1}}\int {\left[ {\frac{1}{2}{\Upsilon _{0}}^{2}{\Pi ^{2}} + \frac{1}{2}{\phi _{z}}^{2} + {m^{2}}\left( {1 - \cos \phi } \right)} \right]} dz $$ (2) has been evaluated by transfer integral methods [1,2].
year | journal | country | edition | language |
---|---|---|---|---|
1984-01-01 |