6533b834fe1ef96bd129d5c9

RESEARCH PRODUCT

HSP60 activity on human bronchial epithelial cells

Fabio BucchieriPaola BrunBruno BalbiClaudia SangiorgiFrancesco CappelloIsabella GnemmiEverly Conway De MacarioAntonino Di StefanoAndrea GiordanoAngelo LeoneAlberto J. L. MacarioDavide Vallese

subject

0301 basic medicinep38αSettore BIO/17 - IstologiaLipopolysaccharidep38 mitogen-activated protein kinasesImmunologyStimulationBronchip38 Mitogen-Activated Protein KinasesERK1Cell LinePathogenesisMitochondrial Proteins03 medical and health scienceschemistry.chemical_compound0302 clinical medicineOriginal Research ArticlesHumansImmunology and AllergyCOPDInterleukin 8Protein kinase AReceptor16-HBE; COPD; CREB1; ERK1; HSP60; IL-10; IL-8; JNK1; MyD88; NF-κB p65 subunit; TLR-4; p38αPharmacologyIL-8Settore BIO/16 - Anatomia UmanaInterleukin-8JNK1NF-κB p65 subunitEpithelial CellsTLR-4Chaperonin 60MyD88Interleukin-1016-HBEToll-Like Receptor 416-HBE; COPD; CREB1; ERK1; HSP60; IL-10; IL-8; JNK1; MyD88; NF-κB p65 subunit; p38α; TLR-4; Immunology and Allergy; Immunology; PharmacologyInterleukin 10030104 developmental biologychemistry030220 oncology & carcinogenesisIL-10Cancer researchCREB1NF-κB p65 subunitHSP60p38α

description

HSP60 has been implicated in chronic inflammatory disease pathogenesis, including chronic obstructive pulmonary disease (COPD), but the mechanisms by which this chaperonin would act are poorly understood. A number of studies suggest a role for extracellular HSP60, since it can be secreted from cells and bind Toll-like receptors; however, the effects of this stimulation have never been extensively studied. We investigated the effects (pro- or anti-inflammatory) of HSP60 in human bronchial epithelial cells (16-HBE) alone and in comparison with oxidative, inflammatory, or bacterial challenges. 16-HBE cells were cultured for 1–4 h in the absence or presence of HSP60, H2O2, lipopolysaccharide (LPS), or cytomix. The cell response was evaluated by measuring the expression of IL-8 and IL-10, respectively, pro- and anti-inflammatory cytokines involved in COPD pathogenesis, as well as of pertinent TLR-4 pathway mediators. Stimulation with HSP60 up-regulated IL-8 at mRNA and protein levels and down-regulated IL-10 mRNA and protein. Likewise, CREB1 mRNA was up-regulated. H2O2 and LPS up-regulated IL-8. Experiments with an inhibitor for p38 showed that this mitogen-activated protein kinase could be involved in the HSP60-mediated pro-inflammatory effects. HSP60 showed pro-inflammatory properties in bronchial epithelial cells mediated by activation of TLR-4-related molecules. The results should prompt further studies on more complex ex-vivo or in-vivo models with the aim to elucidate further the role of those molecules in the pathogenesis of COPD.

10.1177/0394632017734479http://hdl.handle.net/10447/242844