6533b834fe1ef96bd129e1cc
RESEARCH PRODUCT
The TRAPSENSOR facility: an open-ring 7 tesla Penning trap for laserbased precision experiments
Lucas LamataJavier BañuelosJ.m. CornejoStefan E. SchmidtJoaquín BerrocalOliver KalejaRaúl A. RicaManuel J. GutiérrezFrancisco DomínguezMichael BlockJesús J. Del PozoIñigo ArrazolaPablo EscobedoEnrique SolanoEnrique SolanoEnrique SolanoDaniel Rodríguezsubject
electronPhysics - Instrumentation and DetectorsPenning trapSpectrometry techniqueGeneral Physics and Astronomy7. Clean energy01 natural sciencesFrequency measurements010305 fluids & plasmasdecayLaser coolingStrong magnetic fieldsPaul trapPhysics::Atomic PhysicsLaser beamsmass spectrometryPhysicsQuantum PhysicsprotonsEuropean researchInstrumentation and Detectors (physics.ins-det)Beam preparationRadioactive ion beam facilitybeam preparationIon beamsperformanceLaser beamsspectroscopyFOS: Physical sciencesFluorescenceFluorescence detectionFrequency measurementslaser coolingRadio-frequency fields0103 physical sciencesOptical systemsTrapped ionsddc:530010306 general physicsshiptrapIonsPhotonsMass spectrometrysetuppenning trapmass-spectrometryfluorescence detectionionQuantum Physics (quant-ph)Humanitiesdescription
APenning-trap facility for high-precision mass spectrometry based on a novel detection method has been built. This method consists in measuring motional frequencies of singly-charged ions trapped in strong magnetic fields through the fluorescence photons from laser-cooled 40Ca+ ions, to overcome limitations faced in electronic single-ion detection techniques. The key element of this facility is an open-ring Penning trap coupled upstream to a preparation Penning trap similar to those used at Radioactive Ion Beam facilities. Here we present a full characterization of the trap and demonstrate motional frequency measurements of trapped ions stored by applying external radiofrequency fields in resonance with the ions’ eigenmotions, in combination with time-of-flight identification. The infrastructure developed to observe the fluorescence photons from 40Ca+, comprising the 12 laser beams and the optical system to register the image in a high-sensitive CCD sensor, has been proved by taking images of the trapped and cooled 40Ca+ ions. This demonstrates the functionality of the proposed laser-based mass-spectrometry technique, providing a unique platform for precision experiments with implications in different fields of physics.
year | journal | country | edition | language |
---|---|---|---|---|
2019-02-28 |