6533b835fe1ef96bd129ea47

RESEARCH PRODUCT

The first 40Ar-39Ar date from Oxfordian ammonite-calibrated volcanic layers (bentonites) as a tie-point for the Late Jurassic.

F. De Oliveira RamalhoSébastien NomadeHervé GuillouL. MartireFabrice MonnaPierre Pellenard

subject

010504 meteorology & atmospheric sciences[SDE.MCG]Environmental Sciences/Global ChangesgeochronologyBiozone010502 geochemistry & geophysics[ SDU.STU.ST ] Sciences of the Universe [physics]/Earth Sciences/Stratigraphy01 natural sciencesOxfordianPaleontologyGeologic time scale[SDU.STU.GC]Sciences of the Universe [physics]/Earth Sciences/GeochemistryStage (stratigraphy)0105 earth and related environmental sciencesAmmonitegeographygeography.geographical_feature_categorypalaeovolcanismbentoniteGeology[ SDU.STU.GC ] Sciences of the Universe [physics]/Earth Sciences/Geochemistrylanguage.human_languageJurassic Time Scale[ SDE.MCG ] Environmental Sciences/Global ChangesVolcano[SDU.STU.ST]Sciences of the Universe [physics]/Earth Sciences/StratigraphyGeochronologylanguageRadiometric datingGeologyVolcanic ash

description

AbstractEight volcanic ash layers, linked to large explosive events caused by subduction-related volcanism from the Vardar Ocean back-arc, interbedded with marine limestones and cherts, have been identified in the Rosso Ammonitico Veronese Formation (northeastern Italy). The thickest ash layer, attributed to the Gregoryceras transversarium ammonite Biozone (Oxfordian Stage), yields a precise and reliable 40Ar–39Ar date of 156.1 ± 0.89 Ma, which is in better agreement with GTS2004 boundaries than with the current GTS2012. This first biostratigraphically well-constrained Oxfordian date is proposed as a new radiometric tie-point to improve the Geologic Time Scale for the Late Jurassic, where ammonite-calibrated radiometric dates are particularly scarce.

https://hal.archives-ouvertes.fr/hal-00872116