6533b835fe1ef96bd129ed67

RESEARCH PRODUCT

Biomimetic Alginate/Gelatin Cross-Linked Hydrogels Supplemented with Polyphosphate for Wound Healing Applications

Shichu XiaoWerner E. G. M�llerHadrian ScheplerXiaohong WangEmad TolbaMeik NeufurthHeinz C. SchröderShunfeng Wang

subject

Keratinocyteszinc ionscell migrationMetal NanoparticlesPharmaceutical ScienceBiocompatible Materials02 engineering and technologyGelatinAnalytical ChemistryExtracellular matrixchemistry.chemical_compoundBiomimeticsCell MovementPolyphosphatesSpectroscopy Fourier Transform InfraredDrug DiscoveryalginateSkinchemistry.chemical_classificationcoacervate0303 health sciencesCoacervateTissue ScaffoldsHydrogelsPolymerHydrogen-Ion Concentration021001 nanoscience & nanotechnologyExtracellular MatrixZincChemistry (miscellaneous)Self-healing hydrogelsMolecular Medicine0210 nano-technologyHybrid materialPorosityinorganic polyphosphatefood.ingredientionic cross-linkingAlginatesCell Survivalperiodate oxidationArticlegelatinlcsh:QD241-44103 medical and health sciencesfoodlcsh:Organic chemistryHumansPhysical and Theoretical Chemistry030304 developmental biologyIonsWound HealingTissue EngineeringPolyphosphateOrganic Chemistryhuman epidermal keratinocytestechnology industry and agricultureChemical engineeringchemistrynanoparticlesEpidermisWound healing

description

In the present study, the fabrication of a biomimetic wound dressing that mimics the extracellular matrix, consisting of a hydrogel matrix composed of non-oxidized and periodate-oxidized marine alginate, was prepared to which gelatin was bound via Schiff base formation. Into this alginate/oxidized-alginate-gelatin hydrogel, polyP was stably but reversibly integrated by ionic cross-linking with Zn2+ ions. Thereby, a soft hybrid material is obtained, consisting of a more rigid alginate scaffold and porous structures formed by the oxidized-alginate-gelatin hydrogel with ionically cross-linked polyP. Two forms of the Zn-polyP-containing matrices were obtained based on the property of polyP to form, at neutral pH, a coacervate&mdash

10.3390/molecules25215210https://www.mdpi.com/1420-3049/25/21/5210