6533b835fe1ef96bd129f110
RESEARCH PRODUCT
Search for $\eta$ and $\eta^\prime\to \pi^+ e^- \bar{\nu}_e +c.c.$ decays in $\jpsi \to \phi \eta$ and $\phi \eta^\prime$
M. AblikimM. N. AchasovO. AlbayrakD. J. AmbroseF. F. AnQ. AnJ. Z. BaiR. Baldini FerroliY. BanJ. BeckerJ. V. BennettM. BertaniJ. M. BianE. BogerO. BondarenkoI. BoykoR. A. BriereV. BytevH. CaiX. CaiO. CakirA. CalcaterraG. F. CaoS. A. CetinJ. F. ChangG. ChelkovG. ChenH. S. ChenJ. C. ChenM. L. ChenS. J. ChenX. ChenY. B. ChenH. P. ChengY. P. ChuD. Cronin-hennessyH. L. DaiJ. P. DaiD. DedovichZ. Y. DengA. DenigI. DenysenkoM. DestefanisW. M. DingY. DingL. Y. DongM. Y. DongS. X. DuJ. FangS. S. FangL. FavaC. Q. FengP. FriedelC. D. FuJ. L. FuY. GaoC. GengK. GoetzenW. X. GongW. GradlM. GrecoM. H. GuY. T. GuY. H. GuanN. G. GulerA. Q. GuoL. B. GuoT. GuoY. P. GuoY. L. HanF. A. HarrisK. L. HeM. HeZ. Y. HeT. HeldY. K. HengZ. L. HouC. HuH. M. HuJ. F. HuT. HuG. M. HuangG. S. HuangJ. S. HuangL. HuangX. T. HuangY. HuangY. P. HuangT. HussainC. S. JiQ. JiQ. P. JiX. B. JiX. L. JiL. L. JiangX. S. JiangJ. B. JiaoZ. JiaoD. P. JinS. JinF. F. JingN. Kalantar-nayestanakiM. KavatsyukB. KopfM. KornicerW. KuehnW. LaiJ. S. LangeM. LeyheC. H. LiCheng LiCui LiD. M. LiF. LiG. LiH. B. LiJ. C. LiK. LiLei LiQ. J. LiS. L. LiW. D. LiW. G. LiX. L. LiX. N. LiX. Q. LiX. R. LiZ. B. LiH. LiangY. F. LiangY. T. LiangG. R. LiaoX. T. LiaoD. LinB. J. LiuC. L. LiuC. X. LiuF. H. LiuFang LiuFeng LiuH. LiuH. B. LiuH. H. LiuH. M. LiuH. W. LiuJ. P. LiuK. LiuK. Y. LiuKai LiuP. L. LiuQ. LiuS. B. LiuX. LiuY. B. LiuZ. A. LiuZhiqiang LiuZhiqing LiuH. LoehnerG. R. LuH. J. LuJ. G. LuQ. W. LuX. R. LuY. P. LuC. L. LuoM. X. LuoT. LuoX. L. LuoM. LvC. L. MaF. C. MaH. L. MaQ. M. MaS. MaT. MaX. Y. MaF. E. MaasM. MaggioraQ. A. MalikY. J. MaoZ. P. MaoJ. G. MesschendorpJ. MinT. J. MinR. E. MitchellX. H. MoH. MoeiniC. MoralesK. MoriyaN. Yu. MuchnoiH. MuramatsuY. NefedovC. NicholsonI. B. NikolaevZ. NingS. L. OlsenQ. OuyangS. PacettiJ. W. ParkM. PelizaeusH. P. PengK. PetersJ. L. PingR. G. PingR. PolingE. PrencipeM. QiS. QianC. F. QiaoL. Q. QinX. S. QinY. QinZ. H. QinJ. F. QiuK. H. RashidG. RongX. D. RuanA. SarantsevH. S. SazakB. D. SchaeferM. ShaoC. P. ShenX. Y. ShenH. Y. ShengM. R. ShepherdW. M. SongX. Y. SongS. SpataroB. SpruckD. H. SunG. X. SunJ. F. SunS. S. SunY. J. SunY. Z. SunZ. J. SunZ. T. SunC. J. TangX. TangI. TapanE. H. ThorndikeD. TothM. UllrichI. U. UmanG. S. VarnerB. Q. WangD. WangD. Y. WangK. WangL. L. WangL. S. WangM. WangP. WangP. L. WangQ. J. WangS. G. WangX. F. WangX. L. WangY. D. WangY. F. WangY. Q. WangZ. WangZ. G. WangZ. Y. WangD. H. WeiJ. B. WeiP. WeidenkaffQ. G. WenS. P. WenM. WernerU. WiednerL. H. WuN. WuS. X. WuW. WuZ. WuL. G. XiaY. X. XiaZ. J. XiaoY. G. XieQ. L. XiuG. F. XuG. M. XuQ. J. XuQ. N. XuX. P. XuZ. R. XuF. XueZ. XueL. YanW. B. YanY. H. YanH. X. YangY. YangY. X. YangH. YeM. YeM. H. YeB. X. YuC. X. YuH. W. YuJ. S. YuS. P. YuC. Z. YuanY. YuanA. A. ZafarA. ZalloS. L. ZangY. ZengB. Z. ZenginB. X. ZhangB. Y. ZhangC. ZhangC. C. ZhangD. H. ZhangH. H. ZhangH. Y. ZhangJ. Q. ZhangJ. W. ZhangJ. Y. ZhangJ. Z. ZhangLili ZhangR. ZhangS. H. ZhangX. J. ZhangX. Y. ZhangY. ZhangY. H. ZhangZ. P. ZhangZ. Y. ZhangZhenghao ZhangG. ZhaoH. S. ZhaoJ. W. ZhaoK. X. ZhaoLei ZhaoLing ZhaoM. G. ZhaoQ. ZhaoS. J. ZhaoT. C. ZhaoX. H. ZhaoY. B. ZhaoZ. G. ZhaoA. ZhemchugovB. ZhengJ. P. ZhengY. H. ZhengB. ZhongL. ZhouX. ZhouX. K. ZhouX. R. ZhouC. ZhuK. ZhuK. J. ZhuS. H. ZhuX. L. ZhuY. C. ZhuY. M. ZhuY. S. ZhuZ. A. ZhuJ. ZhuangB. S. ZouJ. H. Zousubject
High Energy Physics - PhenomenologyHigh Energy Physics::ExperimentNuclear ExperimentHigh Energy Physics - Experimentdescription
Using a sample of 225.3 million $\jpsi$ events collected with the BESIII detector at the BEPCII $e^+e^-$ collider in 2009, searches for the decays of $\eta$ and $\eta^\prime\to\pi^+ e^- \bar{\nu}_e +c.c.$ in $\jpsi \to \phi \eta$ and $\phi\eta^\prime$ are performed. The $\phi$ signals, which are reconstructed in $K^+K^-$ final states, are used to tag $\eta$ and $\eta^\prime$ semileptonic decays. No signals are observed for either $\eta$ or $\eta^\prime$, and upper limits at the 90% confidence level are determined to be $7.3\times 10^{-4}$ and $5.0\times 10^{-4}$ for the ratios $\frac{{\mathcal B}(\eta\to \pi^+ e^- \bar{\nu}_e +c.c.)}{{\mathcal B}(\eta \to \pip\pim\piz)}$ and $\frac{{\mathcal B}(\eta^\prime\to \pi^+ e^-\bar{\nu}_e +c.c.)}{{\mathcal B}(\eta^\prime \to \pip\pim\eta)}$, respectively. These are the first upper limit values determined for $\eta$ and $\eta^\prime$ semileptonic weak decays.
year | journal | country | edition | language |
---|---|---|---|---|
2012-11-15 |